London Mathematical Society Lecture Note Series. 255

Symmetries and Integrability
of Difference Equations

Edited by

Peter A. Clarkson
University of Kent at Canterbury

Frank W. Nijhoff
University of Leeds

=% CAMBRIDGE
&,

UNIVERSITY PRESS




241 dimensional soliton cellular
automaton

S. Moriwaki*, A. Nagait, J. Satsumat, T. Tokihirof,
M. Toriit, D. Takahashi} and J. Matsukidaira}

*Nippon MOTOROLA Ltd. Second Design Section,
Pager Subscriber Unit Product Design Department,
Paging Products Devision
Minami-Azabu 3-20-1, Minato-ku, Tokyo 106, Japan
TGraduate School of Mathematical Sciences,
University of Tokyo,

Komaba 3-8-1, Meguro-ku, Tokyo 153, Japan
{Department of Applied Mathematics and Informatics,
Ryukoku University,

Yokotani 1-5, Seta, Ooe-cho, Ohtsu 520-21, Japan

Abstract

A 241 dimensional soliton cellular automaton is derived from dis-
crete analogue of a generalized Toda equation.through the procedure
of the so-called ultra-discretization. Its soliton solution and the time
evolution are also discussed.

1 Introduction

Recently, discrete soliton systems have attracted much attention. Among
them, “ultra-discrete” soliton equations, in which dependent variables as well
as independent variables take discrete values, have been actively studied. One
of the most important ultra-discrete soliton systems is the so-called “soliton
cellular automaton”, or SCA for short [1]. This is 1(space) -+ 1(time) dimen-
sional and two-valued (0 and 1). The time evolution of the value of the j—th
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cell at time #, uj, is given by

=1 -1

w1 ool dfube=0 & S Tals> ) Y alt!

ultl = - 2 (1)
1=—00 1=—00

0 otherwise

A remarkable feature of equation (1) is that any state consists only of solitons,
interacting in the same manner as KdV solitons. Moreover it possesses an
abundant combinatoric structure and an infinite number of conserved quanti-
ties [2]. Quite recently, a direct connection between the SCA and the Lotka-
Volterra equation, which is considered as one integrable discretization of the
KdV equation, has been clarified (3, 4]. A key to the discretization, which we
call the “ultra-discretization” in this context, is the following formula:

i Xley = =
Elir;’}oslog(l +e7/f) = F(X) = max[0, X]. (2)

The purpose of this paper is to present a 2+1 dimensional SCA derived
from ultra-discretization of the 2+1 dimensional Toda equation. In section 2,
we derive the 2+1 dimensional SCA through ultra-discretization of a special
case of DAGTE, i.e. discrete analogue of a generalized Toda equation. In
section 3, we discuss soliton solution for the 241 dimensional SCA and its
time evolution. Concluding remarks are given in section 4.

2 Discrete analogue of a generalized Toda
equation and the 241 dimensional SCA

‘We start with the following difference equation proposed by Hirota [5],
[Z, exp(D1) + Zz exp(Dy) + Zsexp(Ds)] f - f =0, (3)

where Z;(1 = 1,2,3) are arbitrary parameters and D;(i = 1,2,3) stand for
Hirota’s derivatives [6] with respect to variables of the unknown function f.
Equation (3) is called discrete analogue of a generalized Toda equation, or
Hirota-Miwa equation. Many soliton equations are obtained by taking proper
limit of equation (3) [5].

In this paper, we consider a particular case of equation (3),

{exp(Dy) - 8> exp(Da) — (1 - &%) exp(D,)} £ - F =0, (4)

or equivalently,

fE-Lagy)flt+13,y) - 3ftz— 1,97t z+1,y)
-1-ftz,y+1)ft,z,y—1) =0. (3)
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Equation (5) reduces to a discrete analogue of the 2+1 dimensiona] Toda
equation [7, 8,

—I(l,m,n+1)V(l,m,n), (6)

V(i+1,mn) = V(,mn) = I(l,m+1,n)V({+1,m,n)
It,m+1L,n)-Il,m+1n) = V(l+1,m,n—1)—V(l,m,n),

through the following independent and dependent variable transformatiopg

Tz —y—t+1 _z—y+i+1 _
[ = 5 M=, n=2z (1) 3

NS
SR
i

L S
e AT

— T(l+1;m>n+ I)T(l’m+ L,n — 1)
V(l,m,n) = T(l,m—i"l,n)T(lwm’n) ®)

_ Yo o r(l+1,mn)r(l,mn—1)

Let us derive an ultra-discrete version of equation (56). The dependent
variable transformation,

f(t,z,y) = exp[S(t,z,y)] (11)

yields

exp[A}S(t, z,y)] — 6% exp[A2S(t, z,y)] — (1 — 6%) exp[A2S(t,z,y)] =0, (12)

or equivalently,

2

exp[(Af - A;)S(t,x, y)] =(1- 52) (1 + 1 i 52

expl(A2 — Aj)S(t,x,y)]) |

(13)
Each operator A;, A, and A, represents central difference operator defined,
for example, by

A?S(ta z, y) = S(t+ l,x,y) - 2S(t1$:y) + S(t - l,x,y). (14)
Taking a logarithm of equation (13) and operating (A2 — A?), we have
52
(A} = A))u(t, z,y) = (A2 - Al)log (1 + g eplult, :z:,y)]) , o (15)

where

u(t7$7y) = (Azzc - A;)S(t’x>y)' (16)
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E We finally take an ultra-discrete limit of equation (15). Putting

v(t, z,y) §2 Fog
: e (17)

ult,z,y) =
and taking the small limit of &, we obtain the following equation,

(AtQ = A;)U(t: Z, y) = (Ai T A;)F(’U(t! z, y) e ‘90)7 ! (18)
F(X) = max|0, X]. (19)

We have rewritten 1_1}1530 Ve(t,7,y) as v(t,z,y) in equation (18). We call the

ultra-discrete system satisfying the above equation (18) the 2+1 dimensional
SCA.

3 Soliton solution for the 241 dimensional
SCA

In this section, we discuss soliton solution for the 2+1 dimensional SCA
governed by equation (18). Since we have derived equation (18) by taking
an ultra-discrete limit of bilinear equation (5), we may well consider that the

soliton solution for equation (18) is also obtained by ultra-discretization of
that for equation (5).

We first consider one-soliton solution. The bilinear equation (5) admits
one-soliton solution given by

fit,z,y) =1+€", n=pz+qy+ wt, (20)
where the set of parameters (p, ¢,w) satisfies a dispersion relation,
(€™ +e’) —6%(eP+e”) — (1 - 6% (e +e79) =0. (21)
Following the procedures given by egs. (11) and (16), we have
u(t, z,y) = log(1 + ") +log(1 +€"P) — log(1 +€"%) — log(1 +€"7%). (22)
In order to take an ultra-discrete limit, we introduce new variables as

ep=P, eq=Q, ew=Q, K =Pz + Qy + i, (23)
Ue(t, 3, y) = eult, z,y). (24)

Taking a limit € — +0, we obtain

v(t,2,9) =F(K+P)+F(K-P)~F(K+Q)-F(K - Q).  (25)
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The dispersion relation (21) reduces, through the same limiting procedure to
|Q| = ma'X“P|1 IQI + 60] - max[O, 00] (26

Next we construct two-soliton solution. Equation (5) possesses two-solitg
solution written as

Jtzy)=1+em +em +en™ no=patgy+wt (i=1,2), (27"
(e™ + &) — §%(e7Pi + &P) — (1 —6%)(e % + e ) =0(i=1,2). (28)

The variable 6,5 stands for a phase shift and is determined by the follow

ing -
relation: '

2 (emwrtwz 4 g Tw2) — 52(e—m+pz + ePiP2) — (] — 52)(3—91+92 + eql—q‘z)
= (ewx+wz + e-—m—wz) — 52(em+p2 + e-—pl—pz) — (1 _ 52)(eq1+q2 + e“h‘fh) :
(29)

Introducing new variables as

epi=F, =@, ew; =i, Ki=Pz+Quy+Qt, (6=1,2) (30 :
'UE(t) Z, y) = €U(t,.’11,y), 6612 = @12) (31) H

and taking the same limit € — +0, we have

v(t,z,y) = max[0,K; + P, Ky+ Py, Ky + Ko+ P, + P, + O12)
+max[0, K; — P, Ky — P, K1 + K, — P, — P, + O]
—max[0, K; + Q1, K2 4+ Q3, K1 + Ko + Q1 + Q2 + O12]
—max[0, Ky — Q1, Kz — Q2, K1 + Ky — Q1 — Q3 + ©1,)(32)
%] = max[|Fi[,|Qi] + bo] — max[0, 6] (i = 1,2). (33)

Phase shift term ©;, is determined by

max [@12 + max[O,eo] + |Ql + Qg|,ma.x[0, 90] + |Ql — Qg”
= max[O + |P 4+ Po|, O12+ by + |Q1 + Qa,
|P1—P2|,90+IQ1—Q2”, (34)

which is obtained through the same limit £ — +0 in equation (29).
It should be noted that N-soliton solution can also be found through the
same limiting procedure. This is given by

vlt,z,y) = max ng{gg{N[m(Ki+Pi)],r51<a3x{umj@zj]}

+ max
p=0,1

izﬁ?z‘f‘fw[‘“(hi — Pi)] , r{xgx[muj@ij]]
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" 3 | K+ Q0]

~max | _max [ui(K; - Qi)]:I}ng[#zﬂj@ij]] , o (35)
K = Pz + Qiy + Qt,
IQZI = max[IP,~|, |Q1| + 90] - max[O, 90] (36)

Each phase shift term ©,;(1 <4 < j < N) satisfies the relation,

max [©y; + max([0, 6] + |Q; + ], max|0, 6] + | — Q1]
= maX[@z'j+|P¢+Bj|,eij+eﬂ+|Qi+Q:jl: :
[P = Py, 60 + Qi — Qs (37)

4 Concluding Remarks

soliton solutions. It is a future problem to construct an ultra-discrete version
. of other kind of solutions, for example, rational, molecular and quasi-periodic
. solutions.
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A. Time evolutions of one- and two-solitong

We here show one- and two-soliton solutions and their time evolutiopg i
the following figures. Figure 1 displays one soliton solution with paramet

P=5,Q=1and90

at t = —4,—3 and its time evolution, respectively, with parameters P =
6,Q1=1,P2=6,Q2=5and90:2. p

8. Cellular Automata

. €rs.
= 2. Figures 2 and 3 demonstrate two-soliton solutioy’

Figures 2 and 3 demonstrate two-soliton solution at ¢t = -4, -3 and itg timé,
evolution, respectively, with parameters P; =6, @, =1, P,=6, Q, =5 and.
00 = 2

= O » N W bdh e N ™

0000032000000000
0000023000000000
0000014000000000
0000004000000000
0000004100000000
0000003200000000
0000002300000000
0000001400000000
0000000400000000
0000000410000000
0000000320000000
0000000230000000
0000000140000000
0000000040000000
0000000041000000
0000000032000000
....... 012345678

Figure 1: One-solition solution (¢ = 0) (The horizontal and vertical axes
represent z and y coordinates, respectively. At the bottom of the left-side
figure, negative values of z coordinate are expressed as “.” for convenience’

sake.)
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t=-4
000000000000004200000000000000
000000000000003300000000000000

* 100000000000002400000000000000

110000000000001500000000000000
011000000000000500000000000000
001100000000000510000000000000
000110000000000420000000000000
OOOO10000000000330000000000000
000011000000000240000000000000
000001100000000150000000000000
000000110000000050000000000000
000000011000000051000000000000
000000001100000042000000000000
000000000100000033000000000000
000000000110000024000000000000
000000000011000015000000000000
000000000001 100005000000000000
0000000000001100051OQOOOOOOOOO
000000000000011004200000000000
000000000000001003300000000000
000000000000001102400000000000
000000000000000111500000000000

.00000000000000001 1500000000000

000000000000000001610000000000
000000000000000000520000000000
000000000000000000431000000000
000000000000000000331000000000
00000000000000000024 1100000000
0000000000000000001501 10000000
00000000000000000005001 1000000

.............. 0123456789 %%k **

ol e = T SN
O = N W v o

= O = N WD N O W
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t=-3
000000000000024000000000000000
100000000000015000000000000000
110000000000005000000000000000
011000000000005100000000000000
001100000000004200000000000000
000110000000003300000000000000
000010000000002400000000000000
000011000000001500000000000000
000001100000000500000000000000
000000110000000510000000000000
000000011000000420000000000000
000000001100000330000000000000
000000000100000240000000000000
000000000110000150000000000000
00000000001 1000050000000000000
000000000001100051000000000000
000000000000110042000000000000
000000000000011033000000000000
000000000000001024000000000000
000000000000001115000000000000
000000000000000115000000000000
000000000000000016100000000000
OOOOOOOOOOOOOOOOOS200000000000
000000000000000004310000000000
000000000000000003311000000000
000000000000000002401000000000
000000000000000001501 100000000
0000000000000000005001 10000000
000000000000000000510011000000
000000000000000000420001 100000

2. T 0123456789%x***x

Figure 2: Two-solition solution (t=-4,-3) (
of z coordinate are expressed as .”
as “*” for convenience sake.)

At the bottom, negative values

and values greater than 10 are also done
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Figure 3: Time evolution of two-soliton solution (Four left-side figures display,
from top to bottom, values of v(t, z, y) at t = —4, -3, 2. —1. four central

figures at t = 0, 1, 2, 3 and four right-hand figures at ¢ = 4, 5, 6, 7.)




