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Abstract

In this paper, we propose an ultradiscrete Burgers equation of which vari-

ables are all discrete. The equation is derived from discrete Burgers equation

under ultradiscrete limit and reduces to an ultradiscrete diffusion equation

through the Cole–Hopf transformation. Moreover, it becomes a cellular au-

tomaton (CA) under appropriate conditions and is identical to rule–184 CA

in a specific case. We show shock wave solutions and asymptotic behaviors

of the CA exactly via the diffusion equation. Finally, we propose a particle

model expressed by the CA and discuss a mean flux of particles.
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I. INTRODUCTION

There are various discreteness of mathematical models to describe physical phenomena.

For example, differential equation, difference equation, coupled map lattice and cellular

automaton (CA) exist from fully continuous model to fully discrete one. Among them, CA

is the most discrete model of which variables are all discrete [1]. Especially, its dependent

variable takes on a finite set of discrete values. Many CA’s have been proposed and used

as a simulator of phenomenon and analyzed mathematically to grasp behavior of solutions.

However, in the analysis, there often exist a difficulty peculiar to CA. For example, when

we discuss linear stability or asymptotic behavior of difference equations, we often take

continuous limit of the equations. In the case of CA, it is difficult to introduce such an

approach due to the discreteness of dependent variable.

As an answer to the above problem, Tokihiro et al proposed a non-analytical limit named

’ultradiscrete limit’;

lim
ε→+0

ε log(eA/ε + eB/ε + · · ·) = max(A,B, · · ·), (1)

where max(A,B, · · ·) returns the maximum element in {A,B, · · ·} [2]. They showed the

discrete Lotka–Volterra equation can reduce to the box and ball system under this limit.

The former is a difference soliton equation with a continuous dependent variable [3]. The

latter is a soliton CA defined by using boxes and balls [4]. Both have N–soliton solutions

and those of box and ball system are obtained exactly from those of discrete Lotka–Volterra

equation again by using the limit.

The ultradiscrete limit is not specific to soliton systems. Since Eq. (1) does not require

integrability, it can be applied widely. Indeed, there exist examples where the ultradiscrete

limit is applied to a chaotic equation and to an elliptic function [5,6].

In this paper, we apply the above ultradiscrete limit to a discrete analogue to the Burgers

equation. Then, we obtain from the equation rule–184 CA of which rules are numbered

following Wolfram [1]. The rule–184 CA (and its equivalence) is the only nonlinear CA

preserving the number of 1’s among CA’s in the form
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U t+1
j = f(U t

j−1, U
t
j , U

t
j+1), (2)

where j is site number, t is time, U is 0 or 1 and f is a Boolean function. Moreover, solutions

to rule–184 CA become steady at large enough t from any initial condition [7–9]. Due to

these remarkable properties, the CA is often used as a base of traffic flow model [10,11].

Contents of this paper are as follows. In Sec. 2, using ultradiscrete limit, we show

the discrete Burgers equation reduces to the ultradiscrete Burgers equation which can be

CA under a specific condition. We call this CA Burgers CA. The discrete Burgers equation

reduces to a linear discrete diffusion equation and Burgers CA also reduces to an ultradiscrete

diffusion equation. In Sec. 3, we show Burgers CA with a specific parameter becomes rule–

184 CA. Moreover, we derive shock wave solutions to Burgers CA obtained from ultradiscrete

limit of discrete solutions. In Sec. 4, we show an asymptotic behavior of solutions to Burgers

CA using ultradiscrete diffusion equation. Solution from any initial state becomes steady at

large enough time. In Sec. 5, we propose a particle model expressed by Burgers CA. Mean

flux of particles becomes constant at large enough time and the constant value depends

only on density of particles. In Sec 6, we give concluding remarks and future problems.

Throughout the results, we use properties of ultradiscrete diffusion equation, as we do for

the continuous Burgers equation.

II. DISCRETE BURGERS EQUATION AND ITS ULTRADISCRETIZATION

First, we derive a discrete Burgers equation by using a discrete Cole–Hopf transformation.

The continuous Burgers equation is

vt = 2vvx + vxx. (3)

It is well-known that this equation can be linearized through the Cole–Hopf transformation

given by

v =
fx

f
, (4)
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into the diffusion equation

ft = fxx. (5)

To discretize Eq. (3), we utilize discrete analogues to Eqs. (4) and (5) [12]. Discretizing both

time and space variables in Eq. (5), a discrete diffusion equation

f t+1
j − f t

j

∆t
=

f t
j+1 − 2f t

j + f t
j−1

(∆x)2
, (6)

is obtained where ∆t and ∆x are lattice intervals in t and x respectively. Next we define a

discrete analogue to the Cole–Hopf transformation

ut
j ≡ c

f t
j+1

f t
j

, (7)

where c is a constant. Rewriting Eq. (6) with ut
j in place of f t

j we obtain

ut+1
j = ut

j−1

1 + 1−2δ
cδ

ut
j + 1

c2
ut

ju
t
j+1

1 + 1−2δ
cδ

ut
j−1 + 1

c2
ut

j−1u
t
j

, (8)

where δ = ∆t/(∆x)2. Assuming v(j∆x, t∆t) =
1

∆x
log

ut
j

c
and taking limits ∆x → 0 and

∆t → 0, we obtain Eq. (3) from Eq. (8). Therefore, we can consider Eq. (8) is a discrete

analogue to Burgers equation (3) and call Eq. (8) ’discrete Burgers equation’.

Next, we ’ultradiscretize’ Eq. (8), that is, discretize a dependent variable u using Eq. (1).

Let us introduce a transformation of variables and parameters as follows:

ut
j = eUt

j/ε, (9)

1− 2δ

cδ
= e−M/ε, (10)

c2 = eL/ε. (11)

Then, Eq. (8) reduces to

U t+1
j = U t

j−1 + ε log(1 + exp(
U t

j −M

ε
) + exp(

U t
j + U t

j+1 − L

ε
))

−ε log(1 + exp(
U t

j−1 −M

ε
) + exp(

U t
j−1 + U t

j − L

ε
)). (12)

Taking a limit ε → +0 and using the relation (1), we obtain
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U t+1
j = U t

j−1 + max(0, U t
j −M, U t

j + U t
j+1 − L)

−max(0, U t
j−1 −M,U t

j−1 + U t
j − L). (13)

Using identities

max(A, B, · · ·) = −min(−A,−B, · · ·), (14)

min(A,B, · · ·) + X = min(A + X, B + X, · · ·), (15)

the above equation becomes

U t+1
j = U t

j + min(M,U t
j−1, L− U t

j )−min(M,U t
j , L− U t

j+1). (16)

If initial U and parameters M and L are all integer, then U for any t and j is always integer.

Thus, we obtain an equation with all discrete variables by the ultradiscrete limit (1). We

call Eq. (16) ’ultradiscrete Burgers equation’.

Under an appropriate condition, Eq. (16) becomes a CA. Assume that M > 0, L > 0

and 0 ≤ U t
j ≤ L for any j at a certain t. Then, relations

min(M,U t
j−1, L− U t

j ) ≥ 0,

min(M,U t
j , L− U t

j+1) ≥ 0,

min(M,U t
j−1, L− U t

j ) + U t
j = min(M + U t

j , U
t
j−1 + U t

j , L) ≤ L, (17)

min(M,U t
j , L− U t

j+1)− U t
j = min(M − U t

j , 0, L− U t
j+1 − U t

j ) ≤ 0,

hold. Therefore, 0 ≤ U t+1
j ≤ L holds for any j. This means Eq. (16) under the above

condition is equivalent to a CA with a value set {0, 1, · · · , L}. We call this CA ’Burgers

CA’, shortly BCA.

Moreover, introducing a transformation

f t
j = exp(F t

j /ε), (18)

an ultradiscrete Cole–Hopf transformation

U t
j = F t

j+1 − F t
j +

L

2
, (19)
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is obtained from Eq. (7) under the limit ε → +0. Then, we obtain an ultradiscrete diffusion

equation;

F t+1
j = max(F t

j−1, F t
j +

L

2
−M, F t

j+1), (20)

from Eq. (16). This equation can also be obtained from Eq. (6) with Eq. (18) under ε → +0.

III. RELATION TO RULE–184 CA AND SHOCK WAVE SOLUTIONS OF

BURGERS CA

In this section, we put a restriction, L ≤ M , on BCA for simplicity. Then, Eq. (16)

reduces to

U t+1
j = U t

j + min(U t
j−1, L− U t

j )−min(U t
j , L− U t

j+1), (21)

because any U t
j satisfies 0 ≤ U t

j ≤ L and is equal to or smaller than M .

Next, let us consider the case L = 1 for Eq. (21). The evolution rule for Eq. (21) is

expressed symbolically by

U t
j−1 U t

j U t
j+1

U t+1
j

=
000

0
,
001

0
,
010

0
,
011

1
,
100

1
,
101

1
,
110

0
,
111

1
. (22)

This rule is equivalent to that of rule–184 CA given by the following Boolean expression

U t+1
j = (U t

j−1 ∧ U t
j ) ∨ (U t

j ∧ U t
j+1) (23)

where ∧, ∨ and denote AND, OR and NOT in Boolean operation respectively [1]. There-

fore, we can conclude that BCA includes rule–184 CA as a special case. Note that various

expressions using max and min functions can include the rule–184 CA. For example, re-

placing x ∧ y, x ∨ y and x with min(x, y), max(x, y) and 1− x respectively in Eq. (23), we

obtain

U t+1
j = max(min(U t

j−1, 1− U t
j ), min(U t

j , U
t
j+1)), (24)

which is equivalent to rule–184 CA if U is restricted to 0 or 1. However, Eqs. (21) and (24)

are not equivalent if U can take an arbitrary integer value.
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Then we derive solutions to Eq. (21) from shock wave solutions to discrete Burgers

equation (8). Let us assume f t
j has the following form;

f t
j = 1 + exp(kj + ωt + ξ0), (25)

where k, ω and ξ0 are constants. Substituting Eq. (25) into Eq. (6), we obtain a dispersion

relation

ω = log(1 + δ(ek − 2 + e−k). (26)

Thus we obtain a solution

ut
j = c

f t
j+1

f t
j

= c
1 + exp(k(j + 1) + ωt + ξ0)

1 + exp(kj + ωt + ξ0)
. (27)

This is a shock wave solution to discrete Burgers equation (8). From this solution, we

obtain a shock wave solution to ultradiscrete Burgers equation (21) by the ultradiscrete

limit. Assuming

k =
K

ε
, ω =

Ω

ε
, ξ0 =

Ξ0

ε
, (28)

and noticing Eqs. (9) and (11), we obtain

U t
j =

L

2
+ max(0, K(j + 1) + Ωt + Ξ0)−max(0, Kj + Ωt + Ξ0). (29)

From Eq. (26) and the condition L ≤ M , a dispersion relation

Ω = |K| (30)

is obtained. If K > 0, lim
j→−∞

U t
j =

L

2
and lim

j→+∞
U t

j =
L

2
+ K. If K < 0, lim

j→−∞
U t

j =
L

2
+ K

and lim
j→+∞

U t
j =

L

2
. We can easily see that the above solution is a propagating wave with a

speed −1 (K > 0) or +1 (K < 0) and its shape is like a step as shown in Fig. 1. Since any

U t
j must be an integer value from 0 to L, it is necessary for the above solution that L is an

even positive integer, |K| ≤ L/2 and Ξ0 is an integer.
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IV. ASYMPTOTIC BEHAVIOR OF BURGERS CA

About the rule–184 CA (22) with a periodic boundary condition, it is known that U t
j at

large enough t becomes a steady solution [7–9]. There are two types of such solutions, one

is U t+1
j = U t

j−1 and the other is U t+1
j = U t

j+1. Which type is selected depends on the total

number of 1’s. So far such a behavior has been mainly derived by pattern analysis on 1–0

sequences. In this paper, since we obtain the relation between rule–184 CA and ultradiscrete

Burgers equation reducible to ultradiscrete diffusion equation, we can derive the asymptotic

behavior from analytic properties of the equations. Moreover, we can show Burgers CA as

an extension of rule–184 CA has similar properties described above.

First let us assume the space site of Eq. (16) is periodic with period K, that is, U t
j = U t

j+K .

Then, we can easily see that
K∑

i=1

U t
i is constant for t. Therefore, defining ρ by

ρ =
1

KL

K∑

i=1

U t
i , (31)

ρ is constant. If we set initial value U0
j at an initial time t = 0, we can construct F 0

j from

an inverse relation of Eq. (19),

F 0
j =





j−1∑

i=0

(U0
i −

L

2
) if j ≥ 1

U0
0 −

L

2
−

j∑

i=0

(U0
i −

L

2
) otherwise

. (32)

Note that F 0
j has a freedom of constant and we set F 0

0 = 0 in the above equation. Moreover,

F 0
j is not periodic and

F 0
j+K − F 0

j =
j+K−1∑

i=j

(U0
i −

L

2
) = KL(ρ− 1

2
). (33)

Then, we can calculate F t
j for t > 0 using Eq. (20) and obtain U t

j by Eq. (19). This U t
j also

satisfies Eq. (16) with the above initial value U0
j . That is, we can grasp the dynamics of

BCA by Eq. (20) in place of Eq. (16).

Next we show asymptotic behavior of U t
j at large enough t. We can assume K is even

without loss of generality because we can consider the period is 2K if K is odd.
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Case 1 :
L

2
≤ M

From Eq. (20), we obtain

F t
j = max(max(F 0

j−t, F
0
j−t+2, · · · , F 0

j+t), max(F 0
j−t+1, F

0
j−t+3, · · · , F 0

j+t−1) + α), (34)

where α =
L

2
−M .

Case 1.1 : ρ <
1

2

In this case, F 0
j+K < F 0

j holds from Eq. (33). Then

F t
j = max(max(F 0

j−t, F
0
j−t+2, · · ·), max(F 0

j−t+1, F
0
j−t+3, · · ·) + α), (35)

is derived for t ≥ K

2
. Therefore,

F t+1
j = F t

j−1 and U t+1
j = U t

j−1, (36)

are obtained. Figure 2(a) shows an example of evolution.

Substituting Eq. (36) into Eq. (20), we obtain

0 = max(0, F t
j − F t

j−1 + α, F t
j+1 − F t

j−1) = max(0, U t
j−1 −M, U t

j−1 + U t
j − L). (37)

From this condition,

U t
j ≤ M and U t

j ≤ L− U t
j+1, (38)

hold for any j. In the case of rule–184 CA (L = 1, M ≥ 1), the above condition means the

sequence U t
1U

t
2 · · ·U t

K contains only 00, 01, 10 and not 11.

Case 1.2 : ρ =
1

2

Since F 0
j+K = F 0

j ,

F t
j =





max(max(F 0
2 , F 0

4 , · · · , F 0
K), max(F 0

1 , F 0
3 , · · · , F 0

K−1) + α) if j − t is even

max(max(F 0
1 , F 0

3 , · · · , F 0
K−1), max(F 0

2 , F 0
4 , · · · , F 0

K) + α) otherwise
, (39)

is derived for t ≥ K

2
. Therefore, we obtain F t+1

j = F t
j±1 and U t+1

j = U t
j±1. Figure 2(b)

shows an example of evolution. Substituting F t+1
j = F t

j±1 into Eq. (20), we get
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U t
j ≤ M L− U t

j+1 ≤ M and U t
j = L− U t

j+1, (40)

for any j. In the case of rule–184 CA, the above condition means the sequence U t
1U

t
2 · · ·U t

K

is 0101 · · · 01 or 1010 · · · 10.

Case 1.3 : ρ >
1

2

By the similar discussion to Case 1.1, we obtain

F t+1
j = F t

j+1 and U t+1
j = U t

j+1, (41)

and

L− U t
j+1 ≤ U t

j and L− U t
j ≤ M, (42)

for t ≥ K

2
. Figure 2(c) shows an example of evolution. In the case of rule–184 CA, the

above condition means the sequence U t
1U

t
2 · · ·U t

K contains only 01, 10, 11 and not 00.

Case 2 :
L

2
> M

From Eq. (20), we obtain

F t
j = max(F 0

j−t, F
0
j−t+1 + α, · · · , F 0

j + tα, · · · , F 0
j+t−1 + α, F 0

j+t). (43)

Case 2.1 : ρ <
M

L

In this case, F t
j+K + Kα < F t

j holds. Therefore,

F t
j = max(F 0

j−t, F
0
j−t+1 + α, · · · , F 0

j−t+K−1 + (K − 1)α), (44)

is derived for t ≥ K. Then, we obtain

F t+1
j = F t

j−1 and U t+1
j = U t

j−1, (45)

and

U t
j ≤ M and U t

j ≤ L− U t
j+1. (46)

Figure 3(a) shows an example of evolution.

Case 2.2 :
M

L
≤ ρ ≤ 1− M

L
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In this case, since |F t
j+K − F t

j | = KL|ρ− 1

2
| ≤ Kα, we can derive

F t
j±K ≤ F t

j + Kα. (47)

Therefore, we obtain

F t
j = max(F 0

j−K+1, F
0
j−K+2 + α, · · · , F 0

j + (K − 1)α,

· · · , F 0
j+K−2 + α, F 0

j+K−1) + (t−K + 1)α, (48)

from Eq. (43) for t ≥ K. Using this relation,

F t+1
j = F t

j + α and U t+1
j = U t

j , (49)

and

M ≤ U t
j ≤ L−M, (50)

hold for t ≥ K. Figure 3(b) shows an example of evolution.

Case 2.3 : ρ > 1− M

L

By the similar discussion to Case 2.1,

F t+1
j = F t

j+1 and U t+1
j = U t

j+1, (51)

and

L− U t
j+1 ≤ U t

j and L− U t
j ≤ M, (52)

hold for t ≥ K. Figure 3(c) shows an example of evolution.

V. PARTICLE MODEL EXPRESSED BY BURGERS CA

In rule–184 CA (22), the number of 1’s is conserved for time and the evolution rule is

interpreted as the following motion of particles [9]:
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Each site can hold one particle at most. U t
j denotes the number of particles

at site j and time t. From t to t + 1, particles move to their right site if the site

is empty at t and do not move otherwise.

BCA (16) including rule–184 CA as a special case can express the following particle model:

Each site can hold L particles at most. U t
j denotes the number of particles

at site j and time t. From t to t + 1, particles at site j can move to site j + 1.

The maximum number of movable particles is M . Under this restriction, they

move to vacant space at site j + 1 as many as possible.

According to the above rule, the number of movable particles at site j and time t is

min(M, U t
j , L−U t

j+1). Therefore, U t+1
j is calculated by Eq. (16). We can easily see from the

above rule that the total number of particles is conserved.

Next let us consider a mean flux of particles [11]. If qt denotes the mean flux, it is defined

by

qt =
1

KL

K∑

i=1

min(M, U t
i , L− U t

i+1). (53)

From the results of the previous section, we can show qt becomes constant at large enough

t and the constant value depends only on the particle density ρ and not on the initial

distribution of particles. For example, in Case 1.1 (
L

2
≤ M , ρ <

1

2
), we get

qt =
1

KL

K∑

i=1

U t
i = ρ (t ≥ K

2
), (54)

since min(M,U t
j , L−U t

j+1) = U t
j from Eq. (38). By similar discussions, in the case of

L

2
≤ M ,

qt =





ρ if ρ ≤ 1

2

1− ρ otherwise

(t ≥ K

2
), (55)

and in the case of
L

2
> M ,

qt =





ρ if ρ <
M

L
M

L
if

M

L
≤ ρ ≤ 1− M

L

1− ρ otherwise

(t ≥ K). (56)
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Especially, we can show that qt increases monotonically on t in the case of
L

2
≤ M .

Using Eq. (16),
K∑

i=1

U t
i = const. and

L

2
≤ M , we obtain

qt+1 − qt =
1

KL

K∑

i=1

{min(M,U t+1
i , L− U t+1

i+1 )−min(M,U t
i , L− U t

i+1)}

=
1

KL

K∑

i=1

max(0, g(U t
i , U

t
i+1, U

t
i+2, U

t
i+3)) ≥ 0, (57)

where

g(a0, a1, a2, a3) = min(2L,L + M + a3, L + a2 + a3,M + a1 + a2 + a3, a0 + a1 + a2 + a3)

−min(L + M + a1, L + a0 + a1, 2M + a1 + a3,M + a0 + a1 + a3).

Figure 4 shows an evolution of qt obtained from the same data as in Fig. 2(c). Since qt is a

finite value, qt becomes constant at t À 0. Then g(U t
j , U

t
j+1, U

t
j+2, U

t
j+3) = 0 is obtained for

any j and we can derive the same results as in the previous section about the asymptotic

behavior.

VI. CONCLUDING DISCUSSIONS

In this paper, the main results are as follows:

(i) The relation between Burgers equation and rule–184 CA is clarified via discrete and

ultradiscrete Burgers equations. Under specific conditions, ultradiscrete Burgers equa-

tion can be Burgers CA including rule–184 CA.

(ii) Shock wave solutions exist in Burgers CA which is derived from discrete shock wave

solutions under ultradiscrete limit.

(iii) Any solution to Burgers CA with periodic boundary condition becomes steady at large

enough time. The sequence of U t
j converges to a stable pattern shifting right or left,

or to a static pattern. Only ρ decides which pattern is selected.
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(iv) Burgers CA expresses an evolutional system of moving particles. The mean flux of

particles becomes constant at large enough time. The constant value depends only

on density of particles. In the specific case, the mean flux increases monotonically on

time.

In the above results, linear diffusion equation obtained by Cole–Hopf transformation

plays an important role. In the discrete Burgers equation, shock wave solutions and asymp-

totic behavior can be grasped through diffusion equation. In Burgers CA, corresponding

results are obtained by parallel discussions. We can consider such a relation between dis-

crete equation and CA can introduce a new viewpoint to discrete analysis.

On the other hand, Burgers CA and rule–184 CA are easy to analyze since they are

related to discrete Burgers equation which can be analyzed exactly. There exist CA’s in the

form of Eq. (2) of which solutions show chaotic behavior. If we discuss such type of CA,

it may be difficult to show what structure of CA is preserved in the corresponding discrete

equation. This is left as a future problem.
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FIGURE CAPTIONS

Figure 1 : Shock wave solution. (a) K > 0, (b) K < 0.

Figure 2 : Time evolution from random initial state for L = 3, M = 2 and K = 30. Black,

dark gray, light gray, white square denote a site with value 3, 2, 1, 0, respectively. (a)

ρ = 0.4, (b) ρ = 0.5, (c) ρ = 0.6.

Figure 3 : Time evolution from random initial state for L = 3, M = 1 and K = 30. Black,

dark gray, light gray, white square denote a site with value 3, 2, 1, 0, respectively. (a)

ρ = 0.3, (b) ρ = 0.4, (c) ρ = 0.7.

Figure 4 : Monotonical increase of qt. The same data as in Fig. 2(c) is used.
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