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Abstract

In this letter, we show that the cellular automaton proposed by two of the authors
(D.T and J.M) is obtained from the discrete Toda lattice equation through a special
limiting procedure. Also by applying a similar kind of limiting procedure to the
N-soliton solution of the discrete Toda lattice equation, we obtain the N-soliton
solution for this cellular automaton.
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The phenomena we observe in nature have been described in many ways.
Among several methods to analyze the behavior of nature, differential equa-
tions have been traditionally the most powerful and often used. However many
systems in the fields of biology, statistical physics, etc., are difficult to describe
using differential equations. These systems are rather easy to deal with using
discrete methods, such as discrete equations, coupled map lattices and cellular
automata(CA’s)[0].

Due to the enormous growth of computer power in recent years, we have been
able to analyze these discrete systems even though they have large degrees
of freedom and strong nonlinearity. Among them, CA’s are most suited for
computer simulation because all of the variables are discrete, including field
variables, and round off error does not occur. Therefore CA’s are extensively
studied and various statistical results are obtained, though traditional meth-
ods used in differential calculus could not have been applied due to the strong
nonlinearity.

On the other hand, in the field of nonlinear physics, soliton theory has suc-
ceeded as an analytical tool for nonlinear evolution equations for almost 30
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years and has been applied to several fields: hydrodynamics, plasma physics,
optical physics and so on. Moreover recent development of soliton theory tells
us it can be also applicable to discrete equations|0].

The notion of soliton for CA’s was first introduced by Park et al[0]. After this
work, soliton-like structures have been found in several CA’s and attempts
to apply soliton theory to CA’s have been made by several groups [0,0,0,0].
However direct relation of CA to soliton equations has not been clear.

Recently we proposed a general method to obtain CA’s from discrete soliton
equations through a limiting procedure[0]. By using this method, we clarified
the relation between the CA which was proposed by two of the authors (D.T.
and J.S. )[0] and the Korteweg de-Vries equation. This is our answer to one
of the unsolved problems listed in the paper of Wolfram|0].

In this letter, we apply this method to the Toda lattice equation. We show
that the CA, which is proposed in the previous paper[0], is obtained from the
discrete Toda lattice equation through the limiting procedure. Also we obtain
N-soliton solutions of this CA from those of the discrete Toda lattice equation.

The starting point is the discrete Toda lattice equation which was introduced
by Hirota0],

log(1 + V) —21og(1 + V) 4+ log(1 + V1)
=log(1 +0°V},}) — 2log(1 + 6°V}) + log(1 + 6°V,_,). (1)

t .
Un — 1, we obtain

By introducing V! = e
Uttt —out 4 Uttt

— log(1 + 6%(eVnr1 — 1)) — 2log(1 + 6%(eV" — 1)) + log(1 + 0%(eVn—1 —1)).

(2)

One can easily obtain the continuous Toda lattice equation,

d?r,
dt?

— ern+1 _ 2ern _|_ ernfl’ (3)

from Eq.(2) by the relation U! = r,(dt) and taking § — 0.
The N-soliton solution of Eq.(2) is given by

U, = Ajlog f,, (4)



with

t N (N)
fo= 3 exp[X i+ Y Ay, 5)
pi=0,1 i=1 i<j

where the difference operator A% on F, is defined by

AiFn: n+1_2Fn+Fn717 (6>

and
& =Pn—Qit+¢, (7)
5 *sinh(Q;/2) = 0;sinh(P;/2), (8)

0,0 — cosh(ipﬁﬂfpjfﬂj)

exp A;; = J 2 , 9
P Aij 0305 — COSh(PiJrQiJ;P]-Jer) (9)
oi,05=1 or —1. (10)
Here €2 and P;(i = 1,2, -+, N) are arbitrary parameters, and > =0, denotes

the summation over all terms obtained by replacing each p; by 0 or 1 and
Zg]) denotes the summation over all possible pairs chosen from N elements.

Now we introduce a positive parameter € defined by § = e~2% where L is a
positive integer, and set U’ = u!, /e. Then noticing the fact

, x X itX >0,
lim elog(l+e<) = max(0,X) = (11)
e to 0 else,

we obtain from Eq.(2) in the limit € — +0
ultt — 2t 4ttt
= max(0,u!,; — L) — 2max(0,u}, — L) + max(0,u!,_; — L), (12)

where the equivalent equation was proposed in the previous paper[0]. Eq.(12)
thus obtained is considered to be Toda-type CA, which shares the common
algebraic properties with Toda lattice equation as shown below.

Let us look at whether the N-soliton solution can survive by this limiting
procedure. The one-soliton solution of Eq.(2) is expressed by

Ul = A2 log(1 + /=€), (13)



where
sinh(€2/2) = od sinh(P/2), (14)
o=1or—1, (15)

Here we set P = p/e, 2 = w/e, and 2 = n"/¢, then we obtain

pnfwt+7]0

ul, = eAZlog(l+e < ). (16)

Taking € — +0, Egs.(16) and (14), respectively, become

ul, = A2 max(0, pn — wt + "), (17)
0 ifn < wt% —1,
_ 0 pwt=n® o« wten®
_ Ipl(n+1) —wt+n if o 1_n_0p : (18)
—Ipl(n —1) —wt +7° if“’t%gng‘“%ﬂ,
0 if n > 20 4]
and
olp—1L) if  p>1L,
w= {0 if —-L<p<L, (19)
—o(-p—L) if p<-—-L,
=o(max(0,p — L) — max(0, —p — L)). (20)

This is the one-soliton solution of Eq.(12), which is identical to the one shown
in the previous paper if we take p, n° as integers and L = 1. It is easy to see
the speed and the maximum amplitude of soliton is expressed by w/p and |p|
from Eq.(18) respectively.

By setting P, = p;/e, Q% = w;/e,&) =n)/e, A;; = a;;/€ and noticing the fact

e——+0

M .
lim elog() e%) = max(Xy, Xo, ..., Xy1, X)), (21)
=1

we also obtain the N-soliton solution in the limit e — +0

u, = A% ph, (22)
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with

N (N)
P = mAX >~ pini + 3 piftyig), )
T =1 1<J

where 7; = pn — w;t + 77?, and

Wi = Ui(max(07pi - L) - max(O, —Pi — L))a (24)
—2min(|p;|, |p;|) + L, if o;=-1and o, = —1,

max(min(p; + w;, —p; — w;), min(—p; — w;, p; +wj)), else.

(About precise derivation of Eq.(25), see Appendix.) Here p;, 7! are arbitrary
parameters, and max [X (11;)] denotes the maximum value in 2V possible values
11i=0,

of X (u;) obtained by replacing each p; by 0 or 1. This solution expresses the
interaction of solitons as shown in the previous paper if we take p;, 7 as
integers and L = 1.

Let us see how the phase shift of solitons are calculated from above formula
by taking 2-soliton solution’s case as example. Consider 2-soliton solution

p:L - max(O, M, M2, + T2 + CL12), <26>
with

p1>p2>L>1,

wi=p1— L, wy=py— L, <27>

nd =0, nS =0,

iFrom Eq.(27) and Eq.(25), Eq.(26) is written by

pr, =max (0, pin — (p1 — L)t,pon — (p2 — L)t,

(1 +p2)n — (p1 +po — 2L)t — (2p2 — L)). (28)
Fig.1 show the interaction of solitons where we take p; = 3, po =2 and L = 1.
At the time ¢t = —oo and around the region 7, = 0, i.e. n ~ ”;—:Lt, we have
Lip: —
o KPP, (29)
hn



and therefore the solution is written as

pb = max(0, ;). (30)

This expresses that one of the solitons exists around the region n; ~ 0 at
t = —oo. Similarly, at the time t = oo and around the region 7; ~ 0, we have

Pl =max(0,n1, 2,1 + M2 + a12),

=1 + max (0,71 + a1z, =02, 11 — M2), (31)
= max(0,n; + a2, =2, 1 — N2), (32)
= max(O, m + alg), (33)

where =< denotes l.h.s and r.h.s give same solution, because the first term of
1.h.s 7, vanishes under the operation of difference operator A2. This expresses
that the soliton also exists around the region n; =~ 0 at t = co but its position
is shifted due to the term a;o. Similarly around the region 7y ~ 0, the solution
is expressed by

max (0,72 + ajp) at ¢ = —o0,
P = (34)
max(0, 1) at t= o0,

and this expresses the other soliton. The value of the phase shift of this solution
in the case of L =1 is given as follows. Eq.(33) can be written

pp=max(0, pin — (pr — 1)t — (2p2 — 1)), (35)
=max(0,p1(n — (2p2 — 1)) — (p1 — D)(t — (2p2 — 1)), (36)
and Eq.(34) at ¢ = —oo can be written
P =max(0, pan — (p2 — 1)t — (2p2 — 1)), (37)
=max(0,p2(n — 1) — (p2 — 1)(t + 1)). (38)
Therefore the solitons shifts its position
(2p2 — 1,2py — 1) for the soliton near 1, = 0, (39)

(—1,1) for the soliton near 7, ~ 0,

in n-t plain.



Similarly in the case 2-soliton solution with
L:17 p1>p2ZL7
wi =-—p1+1, we=—p2+1, (40)
m =0, 75 =0,

the phase shift is given by

(—2p2+1,2py, — 1) for the soliton near 1, = 0,

(41)
(1,1) for the soliton near 7, ~ 0,
(See Fig.2 where we take p; = 3,ps = 2) and in the case with
L:17 plZL7 p22L7
wi=p1— 1, we=—pr+1, (42)
m =0, ny =0,
the phase shift is given by
1,1 for the soliton near 7, ~ 0,
(1,1) m (43)

(—=1,1) for the soliton near 7y ~ 0.

(See Fig.3 where we take p; = 3,ps = 2) These coincident with the result
of previous paper[0]. However in cases other than L = 1, similar estimation
cannot always be applied because it can happens that the pattern of soliton
changes after the interaction. See Fig.4 where we take L = 3,p; = 9,pp =
4,w; = 6,wy = 1. Although we showed only two soliton cases, we can also deal
with the interaction of N-soliton. For example, the 4-soliton solution shown
by Fig.5 in the previous paper is obtained by setting,

p1:77 p2:37 p3:17p4:_27L:17

w1 = 67 Wy = 27 w3 = 07 Wyq = 17 (44>

M= —10,75 = =1, ng =0, njy = —2.

It can also be shown that the phase shift of the N-soliton solution is given by
a summation of that of 2-soliton’s, which each soliton have had through the
interaction with other solitons.



Finally, it should be noted that pf, satisfies

Pt ol =max(2p],, pr, i + g — L), (45)

which is obtained from Eqs.(12) and (22), and this equation may be considered
an analogue of bilinear identity.

In this paper, we have derived a Toda-type CA from the discrete Toda lattice
equation and given a formula for the N-soliton solution. This CA inherits the
properties of the Toda lattice equation including solitary waves and soliton
interactions. We are currently investigating physical properties, such as con-
served quantities|[0], and physical meaning, in terms of a dynamical system,
and will report our results in forthcoming papers. Also, the algebraic structure
of this class of CA’s is to be studied in detail, and remains an open question
for the future.
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Appendix

In the cases 0; # —1 or 0; # —1, arguments of cosh in Eq.(10) do not go to 0
if we take p; # p;. Therefore when taking e — +0, cosh terms dominate and
a;; tend to

0,0 — cosh((p; +w; — p; — w;)/2e€)

a;; =¢€lo ) Al
! 8 0,05 — cosh((p; + w; + p; + wj)/2e€) (A1)
~ elog PP +wi = p; = w;)/2€) + exp((=pi — wi + py + wj)/2€) (A2)
exp((pi + wi + pj + w;)/2€) + exp((—pi — wi — pj — w;)/2€)’
(pi+wi_pj_wj _pi_wi+pj+wj)
~ max 5 : i
_max(pz'—i-wm;pj‘ij’—pi—wi;pj—wj)’ (A.3)
:max(pi+wi;pj_wj _max(pi—i-wrgpj‘i‘wj’ _pi_wi;pj —Wj> 7



2 2 ’

=max(— max(p; + wj, —p; — w;), — max(p; + w;, —p; — wj)),

TPiTwi Pt (pi+wi+pj+wj —pi —w pg—%)>
(A.
(A.
= max(min(p; + w;, —p; — w;), min(—p; — w;, p; + w;)). (A.

In the case of 0; = —1 and 0; = —1, we need careful estimation because the
numerator or the denominator of Eq.(10) goes to 0.

Let us take p; > L and p; > L as an example. From Eq.(8), we have

Wi L
— = —arcsinh (exp(—Q) sinh 26) (A7)

2¢ €

Considering the argument of arcsinh diverges and using the asymptotic ex-

pansion arcsinhx ~ log2x + ;5 for x > 0, we have

% ~ ~log (2 eXp(_zL) sinh 2e> 4exp(—L/e)1sinh2(pZ- 2o A8
Therefore

Pitwi—pj =@ %—log(smh =y - !

2¢ 2¢’  4exp(—L/e)sinh?(p; /2¢)
D 1

1 h .
2¢ + log(sin ) 4 exp(—L/e) sinh®(p; /2¢)

(A.9)

Here consider expanding each term in series of exponential function and es-
timating an asymptotic behavior. First and second term of r.h.s. of Eq.(A.9)
become

exp(pi/2€) — exp(—pi/2e)
2 exp(p;/2e¢)

Di ., Di
— —1 h=—)= -1
P og(sm 26) og

1- —Di i ;
= —log exp2( pi/€) ~ log2 + exp(—g) + exp(—?g) +---, (A.10)
€ €
and third term becomes
1 1
dexp(—L/e)sinh®(p;/2€)  exp(—L/e)(exp(pi/2e) — exp(—p;/2¢))*’
L
~ exp(- 20, (A.11)

=~
SR



Thus we obtain

PRI exp(= ) + exp(—22) + -+ = exp(=P5)
—oxp(=7) —exp(=27) = -+ exp(==——),
pj—L pi— L
~ exp(—2 ) — exp(— - ). (A.12)

Substituting this info the cosh of numerator and using Taylor expansion 1 —
2
cosh? z = —2sinh? 5 ~2 (%) for r < 1,

) e — g\ 2 ) . ) .
aijwelog{Q <pl+wl4 Pi wj) }—elog{coshpri_wl;_p] i 1},
€ €

— L i — L \? L
~ elog (exp(—p] ) — exp(—p )) — elog {cosh = - 1} :
€ € €
~2max(—p; + L,—p; + L) — L,
= —2min(p;, p;) + L. (A.13)

Similarly considering all other possible case, we obtain

a;; = —2min([pi[, [p;]) + L. (A.14)
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Fig. 1. A 2-soliton solution where p1 = 3, ps
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Fig. 2. A 2-soliton solution where p1 =3, po =2, w1 = —2, wo = —1.
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Fig. 3. A 2-soliton solution where p1 =3, p2 =2, w1 =2, wy = —1
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Fig. 4. A 2-soliton solution for the case L = 3
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