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A numerical method that makes use of equations of incompressible flow with
a free surface and an electric field equation is discussed and applied to the study
of a flow ejected from a nozzle by electrostatic force.

In this study, the fluid is treated as electrically perfect conductor. The improved
marker and cell method® and charge simulation method? are used to solve the
motion of fluid and electric field, respectively. The surface configuration is deter-
mined by the balance between the surface tension of the fluid and electrostatic force.

Calculations are performed for several variations of fluid characteristics, strength
of the electric field, and nozzle dimension. Computational results are reasonable
for each variable.

I. INTRODUCTION

It is a very important and interesting problem to form small liquid droplets in combus-
tion or ink jet technology. Typical methods apply a pressure pulse or electrostatic force
to fluid in a nozzle. Numerical simulations of such flow using axisymmetrical Navier-Stokes
equation have been reported.!=® For ink jets, some experimental or analytical studies of
fluid deformation by electrostatic force have been performed.45 However, few numerical
studies of this phenomenon have been carried out because it is difficult to determine the
surface configuration by taking account of both surface tension of the fluid and the elec-
trostatic force. Therefore, quantitative evaluation of the contribution of variables in this
phenomenon (surface tension of the fluid, kinematic viscosity, nozzle dimension, etc.) to
deformation has not yet been performed.

In this paper, we calculate the axisymmetrical Navier-Stokes equation and the axisym-
metrical Laplace equation which govern the motion of the fluid and the electric field, re-
spectively. Here, in order to simplify the calculation, we assume that the fluid is an elec-
trically perfect conductor. We use the improved marker and cell method® for the fluid
motion and use the charge simulation method” for the electric field which can treat the
surface configuration more easily than the finite difference or finite element method. At
each time step, the Navier-Stokes equation is integrated and the Poisson equation for
pressure is solved iteratively using the boundary condition at the free surface which deter-
mines the surface tension of the fluid and the electrostatic force.

Computations are performed for several combinations of surface tension of the fluid,
kinematic viscosity of the fluid, length of the nozzle, radius of the nozzle, and strength
of the electric field.
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II. BASIC EQUATIONS

The governing equations that describe the motion of the fluid are the equation of con-
tinuity and the Navier-Stokes equation. In an axisymmetric coordinate system (z, r), they
are expressed in the following forms:
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where (u, v) are (z, r) components of the velocity, p the pressure, and p the kinematic vis-
cosity. By taking the divergence of the Navier-Stokes equation, we get the Poisson equa-
tion for the pressure:
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The governing equation of the electric field is the Laplace equation:

4d¢ =0 (6)

where ¢ is the electric potential.

III. BOUNDARY CONDITIONS

The boundary conditions are as follows:
1) On the wall of the nozzle, we impose no-slip condition for velocity:

u=0, v =0. @)

The pressure on the wall is derived from the Navier-Stokes equations.
2) At the entrance of the nozzle, the velocity is determined by extrapolation and the
pressure is assumed to be constant with its value py determined by

_Zr
Po = R ®)

where 7 is the surface tension of the fluid, and Ry the radius of the nozzle.
3) On the free surface, we impose the condition of continuity of stress. If we neglect the
effect of the external fluid (air), this condition is expressed as

o¥; - nj =0} n; )]

where o}; and o7 are fluid and electric stress tensor, respectively, and n; the normal vec-
tor to the surface. Each stress tensor is expressed as follows:
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where J;, ; is Kronecker’s delta, D; the electric flux, and R; and R, the principal radii of
curvature of the surface. Here, we neglect the viscous term in Eq. (10) to simplify the cal-
culation. Finally, the surface pressure p, is given by the following equation:

1 1 1
Ps=—T<R1+R>+T€E2' (12)

The velocity on the free surface is determined by extrapolation from the velocity inside
the fluid.

IV. NUMERICAL METHOD

The improved marker and cell method was described in detail by Takahashi et al.6> so
that only a brief discussion of the basic features will be presented here. In the finite differ-
ence calculation, the Navier-Stokes equation (Egs. (2) and (3)) and the Poisson equation
for pressure (Eq. (4)) are approximated as follows:
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where 4t is the interval of time difference and the index »n denotes the number of the time
step. These equations are calculated in the form of the central difference. A unit of rectang-
ular mesh (which we call “cell”) is classified into empty (E), fluid (F), surface (S), or wall
(W) cell. The physical quantities of fluid (velocity and pressure) are represented in the cen-
ter of each cell. Markers are put only in S cells and moved with the velocity of S cells. The
typical classification of the cells and the arrangement of the markers are shown in Fig. 1.
The stress due to surface tension at the surface cell is calculated from the principal radii
of surface curvature that are determined from the positions of markers. Markers are rear-
ranged at each time step and the number of markers in each cell is always controlled to
be constant. Using Eq. (15), pressure at F cells is calculated iteratively with the boundary
condition of the pressure of S cells. Using Eqgs. (13) and (14), velocity at F cells is integrated
by an iterative method and the velocity of S cells is determined by extrapolation.

As regards calculations of electric field, we use the charge simulation method.” Since
the fluid is an electrically perfect conductor, we only consider the nonfluid region. In this
calculation, the electric potential on the surface of the fluid and the nozzle is 0 and the
potential at the electrode is ¥. We choose typical points (equipotential points) on the free
surface of the fluid, the nozzle surface, and the electrode. Moreover, we put rlng-shaped
virtual charges inside the fluid, the nozzle, and the electrode. Figure 2 shows the typlcal



108 Y. TAKEDA et al.

arrangement of equipotential and virtual charge points. The charge at each virtual charge
point Q; is calculated by solving the following equation:
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Fig. 1. Typical classification and arrangement Fig. 2. Typical arrangement of equipotential
of markers. F: Fluid cell; S:surface cell; and virtual charge points.

W: wall cell; [J: empty cell.

0 (on the fluid or nozzle)
Oy (on the electrode)

m
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where m is the number of equipotential points and the coefficient P, ;is the electric poten-
tial at the i-th position induced by a unit charge at the j-th position. After solving Eq. (16),
the electric potential at the equipotential point ¢; is calculated by

¢i = j;Pi,f : Q/" (17)
Electric field E; is given by
' E; =) F,;- 0 (13)

Il

J=1

where the coefficient F; ; is the electric field at the i-th position by a unit charge at the J-th
position.

Finally, the computation procedure is as follows:

1) At the n-th time step, markers are placed as they approximate the configuration of the
fluid region.

2) The values of stress due to the surface tension of S cells are calculated from the prin-
cipal radii of curvature.

3) Using Egs. (16)-(18), the values of electrostatic force of S cells are calculated.

4) The values of pressure of S cells are determined by Eq. (12).

5) Using Eq. (15), the values of pressure of F cells at the »-th time step are calculated by
an iterative method.

6) Using Egs. (13) and (14), the values of velocity of F cells at the (7 + 1)st time step are
calculated by an iterative method.

7) Markers are moved with these velocities by time interval 4.
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8) The configuration of the fluid region at the (n+1)st time step is determined by the
positions of markers and every cell is newly classified.
9) Return to step 2.

V. NUMERICAL RESULTS AND DISCUSSION

Figure 3 is a schematic illustration with the parameters used in the calculation. Initially,
the surface configuration of the fluid is a half-sphere without electric field. In this situation,
the fluid does not move since the surface stress of the fluid is equal to the pressure at the
entrance of the nozzle. At r=0, an electric field is suddenly applied and the fluid begins
to move. We calculate 6 cases with the scheme mentioned in Section 4. The condition in
each case is shown in Table 1. Here, we regard case 1 as the standard case. Kinematic vis-
cosity of the fluid (v), surface tension of the fluid (y), electric potential of the electrode (¥)
length of the nozzle (Ln), and the radius of the nozzle (Ry) used in case 1 are changed in
case 2—case 6, respectively.

Figures 4-9 show the numerical results of each case. In these figures, velocity vectors

NOZZLE Le >/ ELECTRODE
VACUUM »,
Rl
P0 | FLUID
i J SYMMETORY AXIS
y
le— Ln—2=
| i
|
Y, 4

Fig. 3. Schematic illustration and parameters.

Table 1. Characteristics in cases 1-6.

Characteristics Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Surface tension (dyn/cm) 25.0 25.0 15.0 25.0 25.0 25.0
Kinematic viscosity (cm?2/sec) 0.02 0.04 0.02 0.02 0.02 0.02
Electrode potential (V) 2000 2000 2000 4000 2000 2000
Nozzle radius (x 10~3mm) 100 100 100 100 100 150
Electrode radius (mm) 0.35 0.35 0.35 0.35 0.35 0.35
Nozzle length (mm) 0.2 0.2 0.2 0.2 1.2 0.2
Distance from nozzle exit 1.3 1.3 1.3 1.3 1.3 1.3
to electrode (mm)
Pressure at entrance 5000 5000 3000 5000 5000 5000
of nozzle (dyn/cm?)
Mesh points (z) 200 200 200 200 300 200
Mesh points (r) 70 70 70 70 70 70
Mesh interval (z) (mm) 0.01 0.01 0.01 0.01 0.01 0.01
Mesh interval (r) (mm) 0.005 0.005 0.005 0.005 0.005 0.005

Time interval (x 10-6 sec) 0.75 0.75 0.75 0.75 0.75 0.75
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Fig. 4. Numerical results of case

2.

Fig. 5. Numerical results of case
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Fig. 6. Numerical results of case 3. Fig. 7. Numerical results of case 4.

and pressure contours are plotted on, respectively, the upper and lower side of the sym-
metry axis in the fluid region and the contours of electric potential are plotted on the non-
fluid region. Furthermore, Fig. 10 shows the relationship between time and the distance
from the exit of the nozzle to the head of the jet. In Fig. 4, when the electric field is applied,
the fluid is pulled in the z-direction expanding in the r-direction along the surface of the
nozzle. Subsequently the electric field concentrates at the head of the jet and the z-compo-
nent of velocity near the axis increases. Consequently, the fluid pulled out in the z-direc-
tion passes through the hole of the electrode without separating into droplets. In the case
of larger kinematic viscosity (case 2), deformation speed of the fluid is slower than that
in case 1. The fluid configuration is thicker in comparison with that in case 1. It is suspected
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Fig. 9. Numerical results of case 6.

P
E.T i / A ocise-
Nl [ ? / ACASE-3 |
1.5¢ / A e wm(CASE-4
8 | / ®CASE-S 4§
4 /. A/ ./' A CASE-6 -
/ 4
g | i A/ ~ |
E10- /‘r A/ ‘/./ |
w i Jt /'/ -
' Q -J £ |
e
lE -/t/ Af‘,(' o
9 0‘5 | : /’J ‘/“ /0/0/ ./’/o 4
° plﬁfg '!o—o—c—.'o,
° E 10 15 ng

TIME(X107s)
Fig. 10. Relationship between time and distance from nozzle exit to head of jet.

that these differences are caused by the pressure gradient in the nozzle which is proportional
to the kinematic viscosity. In the case of smaller surface tension (case 3), the fluid configura-
tion is much the same as that in case 1. However, deformation speed is lower than that
in case 1 since the pressure at the entrance of the nozzle is smaller than that in case 1. In
case 4, with stronger electric field, moving speed of the fluid is higher than in case 1, as
expected. Moreover, the fluid configuration is sharpened by the effect of stronger concen-
tration of the electric field. In the case of a longer nozzle (case 5), the pressure at the exit,
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of the nozzle decreases since the length of the nozzle is longer. Deformation speed is very
small and the fluid expands radially for a long time. In this case, the electrostatic force is
dominant. In the case of larger radius of the nozzle (case 6), deformation speed is about
the same as that in case 1.

It is known experimentally that the fluid configuration is similar to a circular cone. How-
ever, this was not observed in the present calculations. It is suspected that this difference
is caused by the pressure at the exit of the nozzle and the strength of the electric field. Under
the conditions that we used in the calculation, the stress due to surface tension and the
pressure at the entrance of the nozzle determined by the surface tension play a dominant
part in the deformation of the fluid. Therefore, we expect that the fluid configuration will
resemble a cone under conditions of longer nozzle and stronger electric field.

VI. CONCLUSIONS

In this paper, we tried a numerical simulation of a flow ejected from a nozzle by elec-
trostatic force. We used the improved marker and cell method for the motion of the fluid
and the charge simulation method for the electric field, respectively. At the free surface,
the pressure is determined by the calculation of the surface tension of the fluid and the
electrostatic force. Numerical results show reasonable behavior for changes of parameters.
Furthermore, the effect of various parameters on fluid deformation ¢an be observed.

Computations were carried out using a HITAC M260D computer. Typical computa-
tional time was about 5 hours per case.

REFERENCES

1) Fromm, J.E., Numerical calculation of the fluid dynamics of drop-on demand jets. IBM. Res. Devel., Vol.
28 (1984), pp. 322-333.

2) Katano, Y., Kawamura, T., and Takami, H., Numerical study of drop formation from a capillary jet
using a general coordinate system. Theoretical and Applied Mechanics, Vol. 34 (University of Tokyo
Press, 1986), pp. 3-14. :

3) Ebi, Y. and Kawamura, T., Numerical study of droplet formation from liquid jet. Ricoh Tech. Rep., Vol.
5 (1981), pp. 4-11 (in Japanese).

4) Taylor, G., Disintegration of water drops in an electric field. Proc. Roy. Soc. London. Ser. A, Vol. 280
(1964), pp. 383-397.

5) Macky, W.A., Some investigations on the deformation and breaking of water drops in strong electric
fields. Proc. Roy. Soc. London, Ser. A, Vol. 133 (1931), pp. 565-587.

6) Takahashi, D., Takeda, Y., and Takami, H., Numerical simulation of Collision of liquid droplets. The-
oretical and Applied Mechanics, Vol. 36 (University of Tokyo Press, 1988), pp. 367-380.

7) Kohno, T. and Takuma, T., Numerical Calculation Method of Electric Field, 1st ed., Corona Publishing
Co. (1980), p. 38 (in Japanese).



