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RIEED AR DELFERE

(The connection problem of linear difference equations)
K - B W5 #52 (Yoshifumi KATSUSHIMA)

In this talk, we discuss the solution of difference equations in the complex domain. In
particular, we see how calculate the connection of solutions between co and —oo. The connection
problem of linear difference equations had solved by George David Birkhoff, though the calculus
of connections are not clear. He showed the following proposition in one of his greatest work
about the Riemann Hilbert problem][1].

Proposition 1 (G.D.Birkhoff) Let Q(x) be a matriz n x n of which elements are polynomial of
degree p in x. Then the difference equation

Y(z+1) =Qx)Y () (1)

has formal solution S(x) = [zM*(pje ") a"is; j(x)]i ;. For this formal solution, there exist ana-
Iytic solutions Y+ (x) and Y~ (x) of which asymptotic expansions are

Y+ (z) ~ S(x) (x = 400), (2)
Y~ (z) ~ S(z) (x = —00). (3)

Between these analytic solutions Y and Y ~, there exists a n xn matriz P(z) of which elements
are rational function of e2™* such that

Yt(z) =Y~ (2)P(2). (4)

Remark 1 He showed this proposition when he was 28 or 29 years old. His works are wild and
sensitive during his life. I want to learn his attitude.

However, to determine this connection matriz P(x), we face a difficulty. Birkhoff calculated a
connection matrix only in the case of the difference equation of the Gamma function actually. In
this talk, we reveal the relationship between difference equations and differential equations, and
consider the connection matrix. We see the elements of P(x) are polynomial of e?™* by using
the connection formulas of differential equations, if the Mellin transform of difference equations
are fuchsian differential equations. In particular, we calculate the connection matrix P(x) in the
case that the difference equation is the hypergeometric difference equation. To see the result,
we get the following formulas.

Example 1 We denote o the difference operator o : f(a) — f(a+ 1). Let L be a (single)
hypergeometric difference operator

L=[1-z)(a+1)0” +{(z—=2)(a+1)+7—fa}o+a+1-1]



We find two formal solutions of difference equation Lf(a) = 0:

fla) = aP(1+--), (5)
1
FPla) = (1- 96)_5”_%25_”(17)“045_7(1 +) (6)
—x
where - - - means the formal power series of o~ with its order greater than 0. We denote FL, F?

the Borel summation of f', f% in the direction of +0o and —occo. Then there is a relationship
between F'{ and F*, such that

A A
1 2\ _ 1 2 1,1 1,2
(F+7F+)_(F—7F—) ( A2’1 A272 )

where A; j are

1— e2m’(a—l) e2m’(a—,8)(1 _ eZwi(ﬁ—l))(eQﬂ'i('y—B—l) _ 1)
Ayl = + T ———
(1 — e2mi(a B))(l — e2mi(a 'y+1))

) 1 — e2mi(a—p)
e2mi(y—B-1) _ 1

Apq = 1 _ e2mila—y11)
e?ﬂi(a—,@)(l _ eQWi(B—l))
Ay = S
1 — e2mi(a—y+1)
1— eQm’(a—ﬁ)
Agp =

T e2mi(a—y+1) "

This connection matriz’s elements are surely rational functions of e*™. In the talk, we will
calculate this elements actually, by using Borel-Laplace analysis.

Remark 2 This connection matriz corresponds to the Barnes’ formula of hypergeometric func-
tions.
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(The Padé interpolation method applied to
additive difference Painlevé equations)

HhamEE - —ikFtH KR A (Hidehito NAGAO)

Abstract
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Discrete integrable systems solve inverse eigenvalue problems
for totally nonnegative matrices

HORBE - fHHR G A (Kanae AKAIWA)

Abstract

One of the important topics in inverse eigenvalue problems is constructing matrices with pre-
scribed eigenvalues. In this talk, we clarify interesting relationships of discrete integrable systems
to banded totally nonnegative (TN) matrices and their extensions with prescribed eigenvalues,
where TN matrices are entry-wise matrices whose minors are all nonnegative. Determinant solu-
tions to discrete integrable systems and the associated Hadamard-like polynomials play key roles
in designing a finite-step algorithm for constructing TN matrices with prescribed eigenvalues.
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(Higher KdV flows on the space of closed equicentroaffine
plane curves and a multi-Hamiltonian system)

BAVEABERY: - BETAA88 HAl 2 (Takashi KUROSE)
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Partition functions of integrable lattice models and
combinatorics of symmetric polynomials

RGN - WHEL %R B (Kohei MOTEGI)

Abstract

In recent years, there are advances in combinatorial representation theory of symmetric poly-
nomials based on their integrable model representations, i.e., representing them as partition
functions of integrable lattice models so that one can use the power of quantum inverse scat-
tering method for the analysis. Various symmetric polynomials are realized and various com-
binatorial formulae are discovered and proved depending on the local L-operators and global
boundary conditions. In this talk, including our works, we review the progress, mainly focus
on how symmetric polynomials are realized as partition functions of integrable lattice models of
XXZ type, Felderhof type and boson type. We also explain the connections and applications to
stochastic process and enumerative geometry.
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(Variations of Schur functions and Grassmann manifolds)

RLLERRER « B i % (Takeshi IKEDA)

Abstract

S a—THENT I ARV EREDY 2 — )L M EFE—HE NS 2 L iF 1950 FEICEE D
NZB DRI X9 Th B, 2Dk, hOFEEMPLarEr Y —HimN L Z DRI Tb
NTELD, BETHIRNEZLIENL, HABREIHZAo LI EBETHAH. ZDHETIE,
Ya—~)L MHE AN RRSEAORKK Z R LT, REROFEICOWTERL 72\,

At latest in 1950’ s it was realized that the Schur functions are identified with the Schubert
classes of Grassmann variety. Since then, many attempts have been made to extend this coinci-
dence to other homogeneous spaces as well as to other cohomology theories. This means certain
special families of polynomials are discovered in connection with various homogeneous spaces
and their Schubert subvarieties. At least for the homogeneous spaces of classical types, we now
have a considerable list of such “Schubert” polynomials. In this talk, we will show a genealogical
tree of such polynomials and discuss some open questions.



Conformal blocks and Painleve functions

SR - B 4k Al (Hajime NAGOYA)

Abstract

The asymptotic expansion of the tau function of PVI was given by Jimbo in 1982. His formula
includes the four parameters in PVI and the two integration constants explicitly expressed in
terms of the monodromy data for a linear problem of PVI. The first few terms were written and
in general, the coefficients of the expansion can be computed by the differential equation PVI.
For a long time, an explicit series expansion of the tau function of PVI had not been given.

In 2012, Gamayun, Iorgov, Lisovyy conjectured that the tau function of PVI admits an ex-
pansion in terms of the Virasoro conformal block. Since, the Virasoro conformal block has
an explicit formula by AGT correspondence, they found an explicit expansion of the PVI tau
function, which is a far-reaching generalization of Jimbo’s asymptotic formula.

In my talk, I review on recent results for expansions of the tau functions of the Painleve

equations, in relation to the two dimensional conformal field theory.



Painlevé equations and weight systems

JuK - IMI TH A (Hayato CHIBA)

Abstract

A weight (a tuple of integers) is one of the invariants of the Painlevé equation determined by
the Newton diagram of the equation. In this talk, several topics about the Painlevé equations
and weights will be given. In the first part, the analysis of the Painlevé equations be means of
the weighted projective spaces will be introduced. In the second part, it will be shown that the
weights for the Painlevé equations are closely related to Saito’s theory of weight systems.



Geometric analysis of reductions from Schlesinger
transformations to difference Painlevé equations

University of Northern Colorado Anton DzZHAMAY

Abstract

The goal of this talk is to explain some geometric aspects of a reduction from Schelsinger trans-
formations of the Fuchsian system of the spectral type 111, 111, 111 to the difference Painlevé
equation d—P(Agl)). In particular, we compute explicitly the realization of the extended affine
Weyl symmetry group W(Eg) through elementary birational transformations of its Okamoto
surface of initial conditions and show how to represent our difference Painlevé equation as a
composition of such elementary maps.
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(On the birth of “Hirota’s direct method”)

HOK - L A G (Satoshi TSUJIMOTO)
MR - B K Z)5 (Yasuhiro OHTA)

Abstract
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On fundamental diagram of cellular automata with conserved
quantities

BOR - BT B MDY (Kazushige ENDO)
R - AT S8 Rl (Daisuke TAKAHASHI)

Abstract

We discuss 141D deterministic or stochastic cellular automata (CA) with one or more con-
served quantities. They can often be interpreted as moving particle system and the ‘fundamental
diagram’~ (FD), that is, the relation between particle density and mean flow for the asymptotic
solution is important for the systems. We explain about our method to derive FD using max-
plus algebra, Cole-Hopf type transformation, reduction formula, equilibrium equation and so on.
We review the basic analysis on simple CA’s, and plan to show the analysis on 3-dimensional
FD for a deterministic CA of 5 neighbors and FD of a stochastic multivalued CA.



Algebraic construction of integrable stochastic particle systems
PR - BORWE R A1l 3825 (Yoshihiro TAKEYAMA)

Abstract

We introduce a deformation of the affine Hecke algebra of type GL. Making use of its rep-
resentation, we can construct a difference operator which can be regarded as a discretization
of the Hamiltonian of the one-dimensional delta Bose gas. By specializing the parameters of
the discrete Hamiltonian, we obtain the transition rate matrix of integrable stochastic particle
systems; the g-Boson system due to Sasamoto and Wadati, and its multi-species version.



Pseudo Wilson polynomials and pseudo Askey scheme

BoRBE - 15 )11 Jok (Genki SHIBUKAWA)

Abstract

Using some unitary transforms (Jacobi, Whittaker, Fourier, Mellin trans.), we give explicit
formulas and orthogonality relations for some polynomials which we call pseudo Wilson, pseudo
continuous Hahn, pseudo continuous dual Hahn, pseudo Meixner-Pollaczek polynomials. These
polynomials include as special or limiting cases the finite cases of the Jacobi, Bessel and pseudo
Jacobi polynomials which are finite classes of orthogonal polynomials in the Askey scheme.
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(Degenerate exchange matrices and Y-systems)

FHEK - B L H (Rei INOUE)

Abstract
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HERXPBON, TYATLDRIIY S AT LDOMRELEZ 52 LMo TwS, —J, Hik
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COFEHTIZ, INoD0BR%E 7 7 A8 —ZHTHOIR(L & BRI TR 7: A. N. W. Hone
K EDHEAMEZHNT S, YO AT LD WGER27DIC T ATLZERTSE, YR
T DFIEE I 2 2205 R & Sl 72 B, FFIC Somos-4 DEEIE q 28 VN T R
ns,

When a quiver is mutation periodic, the corresponding T-system and Y-system are defined.
The solution of the T-system gives that of the Y-system, but in many examples we observe that
(i) the general solution of the Y-system is not obtained from that of the T-system, (ii) Y-system
is factorized into a difference equation of lower degree.

In this talk I introduce a joint work with A. N. W. Hone, where we studied the above ob-
servations from the view point of degenerate exchange matrices. We find that the Y-system is
factorized into the non-autonomous difference equation, for example, in the case of Somos-4 we
obtain the Painleve I equation.



