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Abstract



We present a systematic way to construct ultra-discrete versions of the Painlevé equations

starting from known discrete forms. These ultra-discrete equations are cellular automata

the sense that the dependent variable takes only integer values. The ultra-discrete Painlevé

equations have properties characteristic of the continuous and discrete Painlevé’s like co-

alescence cascades, particular solutions and auto-Bäcklund relations.



1. Introduction

What does make the Painlevé equations so important as integrable systems? More than

any other property it is their omnipresence. Whenever one studies integrability, under

any of its disguises, one is bound to encounter, sooner or later, Painlevé equations. They

are the integrable archetypes, being the simplest, genuinely nonlinear, nontrivially inte-

grable systems. Their integrable character manifests itself in several ways. They have a

very particular structure of singularities: all their movable (initial-condition-dependent)

singularities are poles. In fact, this is how they were discovered and this special singular-

ity structure (Painlevé property) became a criterion for integrability. They possess rich

families of particular solutions for specific values of their parameters. There exist a host

of interrelations relating one Painlevé equation to some other or one to itself (for different

values of the parameters). Many other properties do exist and it is not clear whether one

can give an exhaustive list.

Painlevé equations have been discovered, in a fully continuous setting, as second

order differential equations. Higher order Painlevé equations surely exist but only the

second order ones have been identified and thoroughly studied. Recent developments in

the domain of integrability have led to spectacular progress concerning Painlevé equations,

in particular with the discovery of their discrete analogs. The latter were shown to possess

all the properties of their continuous counterparts. The analog of the Painlevé property

here is the notion of singularity confinement, which has become an integrability criterion

for discrete systems. Moreover, it is getting progressively clearer that these discrete objects

are more fundamental than the continuous ones. As a matter of fact, the latter can be

obtained as limiting cases of the former. Semi-continuous Painlevé equations have also

been obtained. They present the peculiarity that they can be interpreted in two different

ways: either as differential-difference systems or as differential-delay ones. However their

study is not as complete as that of the fully discrete equations.

In this paper we shall investigate Painlevé equations in a still new domain: that of
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the ultra-discrete systems. This name is used to designate systems where the dependent

variables, as well as the independent ones, take only discrete values. In this respect ultra-

discrete systems are cellular automata. However we reserve the name of ultra-discrete to

systems obtained from discrete ones through a limiting procedure introduced in [] and

which will be detailed in the next section. Thus the ultra-discrete Painlevé equations will

be obtained in a systematic, algorithmic way, starting from the appropriate well-known

discrete forms. In what follows we shall show that ultra-discrete forms exist for all six

Painlevé equations. Moreover the equations obtained have properties that are charac-

teristic of Painlevé equations. They are organized in coalescence cascades, possess rich

particular solutions (globally described) and auto-Bäcklund transformations that relate

the solutions of the same equation corresponding to different values of the parameters. We

discuss also the possible integrability criteria for ultra-discrete systems.

2. The ultra-discrete limit

Before introducing the ultra-discrete limit let us first consider the question of nonlinearity.

How simple can a nonlinear system be and still be genuinely non linear. The nonlinearities

we are accustomed to, involving powers, are not necessarily the simplest. It turns out

(admittedly with hindsight) that the simplest nonlinear function of x one can think of is

|x|. It is indeed linear for both x > 0 and x < 0 and the nonlinearity comes only from

the different determinations. Thus one would expect the equations involving nonlinearities

only in terms of absolute-values to be the simplest.

The ultra-discrete limit does just that, i.e. it converts a given (discrete) nonlinear

equation to one where only absolute-value nonlinearities appear. The key relation is the

following limit:

lim
ε→0

ε log(1 + ex/ε) = max(0, x) = (x + |x|)/2. (2.1)

Other equivalent expressions exist for this limit and the notation that is often used is the

truncated power function (x)+ ≡ max(0, x). It is easy to show that limε→0 ε log(ex/ε +
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ey/ε) = max(x, y) and the extension to n terms in the argument of the logarithm is straight-

forward.

Let us give, as an example, the ultra-discretisation of the (potential) mKdV equation.

We start with the discrete form:

xk+1
n = xk−1

n

xk
n+1 + µxk

n−1

µxk
n+1 + xk

n−1

(2.2)

First we divide the numerator and denominator of the rhs by xk
n−1 and take the logarithm

of both sides. Next we introduce X through x = eX/ε (and also µ = em/ε) and take the

limit ε → 0. Using (2.1) we find:

Xk+1
n = m + Xk−1

n + (Xk
n+1 −Xk

n−1 −m)+ − (Xk
n+1 −Xk

n−1 + m)+ eqno(2.3)

which is the ultra-discrete form of mKdV.

Two remarks are in order at this point. First, since the function (x)+ takes only

integer values when the argument is integer, the ultra-discrete equations can describe

cellular automata (CA), provided one restricts the initial conditions to integer values.

This approach has already been used in order to introduce CA related to many interesting

evolution equations. Second, the necessary condition for the procedure to be applicable

is that the dependent variables be positive, since we are taking a logarithm. This means

that only some solutions of the discrete equations will survive in the ultra-discretisation.

Moreover, the limit (2.1) exists only if the two terms in the argument of the logarithm

have positive sign. While this is only a technical difficulty, it can sometimes limit the

application of the method.

3. Ultra-discrete Riccati equations

Before embarking upon studying the ultra-discrete form of the Painlevé equations it is

intersting to examine the case of the Riccati equation. Although the latter does not define

a genuine transcendent, it is still the simplest integrable nonlinear equation. Its discrete
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form is known. It is just the homographic mapping and writes:

xn+1 =
αxn + β

γxn + δ
(3.1)

In order to proceed to its ultradiscretisation, let us consider the constraints posed by the

positivity requirement we discussed in the previous section. Taking all of α, β, γ, δ positive

and 0 < xn < ∞, we find that the domain of variation of xn+1 is from β/d to α/γ. Thus, if

we are considering the inverse evolution from xn+1 to xn, and we are given 0 < xn+1 < ∞
it is clear that we will not find in general a positive preimage xn to xn+1. The only way

to ensure this is to have xn+1 take values in the full range (0,∞) and this is possible only

if either β = γ = 0 (i.e. a linear mapping) or α = δ = 0. In the latter case the Riccati

becomes simply xn+1 = β/xn (with γ = 1).

Thus the only homographic mappings that are ultra-discretisable are the mappings:

xn+1 = αxn (3.2)

xnxn+1 = β (3.3)

The ultra-discrete limit is straightforward. We introduce x = eX/ε, α = ea/ε, β = eb/ε,

and take the logarithm of both sides of the equation. We find readily the ultra-discrete

forms:

Xn+1 = Xn + a (3.4)

Xn+1 + Xn = b (3.5)

Thus the Riccati equation (3.5) becomes linear at the ultra-discrete limit. This is quite

satisfactory, since it retains the essential feature of the Riccati, namely to be a linearizable

equation.

4. The ultra-discrete Painlevé equations and their coalescence cas-

cade
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In order to proceed to the analysis of the Painlevé equations, let us start by listing their

appropriate (multiplicative) discrete forms:

d-PI−1

xn+1xn−1 =
αλn

xn
+

1
x2

n

(4.1)

d-PI−2

xn+1xn−1 = αλn +
1
xn

(4.2)

d-PI−3

xn+1xn−1 = αλnxn + 1 (4.3)

d-PII−1

xn+1xn−1 =
αλn(xn + λn)
xn(1 + xn)

(4.4)

d-PII−2

xn+1xn−1 =
xn + αλn

1 + βxnλn
(4.5)

d-PIII

xn+1xn−1 =
(xn + αλn)(xn + βλn)

(1 + γxnλn)(1 + δxnλn)
(4.6)

The remaining Painlevé IV, V and VI equations are best written as systems for two com-

ponents:

d-PIV−1

xn+1xn = 1 + yn (4.7a)

ynyn−1 =
x2

n + (α + 1/α)xn + 1
λn(1 + βλnxn)

(4.7b)

d-PIV−2

xn+1xn = 1 + yn (4.8a)

ynyn−1 =
(x2

n + (α + 1/α)xn + 1)(1 + βλnxn)
1 + γλ2nxn

(4.8b)

d-PV

xn+1xn = 1 + yn (4.9a)
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ynyn−1 =
(x2

n + (α + 1/α)xn + 1)(x2
n + (β + 1/β)xn + 1)

(1 + γλnxn)(1 + δλnxn)
(4.9b)

d-PVI

xn+1xn =
(yn + αλn)(yn + βλn)

(1 + γynλn)(1 + δynλn)
(4.10a)

ynyn−1 =
(xn + ζλn)(xn + ηλn)

(1 + θxnλn)(1 + κxnλn)
(4.10b)

with γδ = θκ and αβ = λζη. Equation (4.9) is just the ’standard’ form of d-PV written

as a system, equations (4.7-8) are its limiting and degenerate forms [] respectively while

d-PVI (4.10) is the asymmetric extension of d-PIII propose by Jimbo ans Sakai [].

Let us point out here that the equations are symmetric as far as the forward and the

backward evolutions are concerned. Thus the positivity requirement once enforced in one

direction is automatically guaranteed in the reverse one. We shall not go into the details

of the ultra-discretisation procedure. The method outlined in Section 2 is applied in a

straightforward way. We first introduce the variable transformation x = eX/ε, y = eY/ε,

and a similar transformation for all the constants that appear in the equation. In all

multiplicative d-P’s, the independent variable enters through z = λn. It suffices thus to

put λ = e1/ε and obtain z = en/ε . This leads to the following list of the ultra-discrete

Painlevé equations:

u-PI−1

Xn+1 + Xn−1 + 2Xn = (Xn + n)+ (4.11)

u-PI−2

Xn+1 + Xn−1 + Xn = (Xn + n)+ (4.12)

u-PI−3

Xn+1 + Xn−1 = (Xn + n)+ (4.13)

u-PII−1

Xn+1 + Xn−1 = a + (n−Xn)+ − (n + Xn)+ (4.14)
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u-PII−2

Xn+1 + Xn−1 −Xn = a + (n−Xn)+ − (n + Xn)+ (4.15)

u-PIII

Xn+1+Xn−1−2Xn = (n+a−Xn)++(n−a−Xn)+−(Xn+b+n)+−(Xn−b+n)+ (4.16)

u-PIV−1

Xn+1 + Xn = (Yn)+ (4.17a)

Yn + Yn−1 = (Xn − a)+ + (Xn + a)+ − (Xn + b + n)+ − n (4.17b)

u-PIV−2

Xn+1 + Xn = (Yn)+ (4.18a)

Yn + Yn−1 = (Xn − a)+ + (Xn + a)+ − (Xn + b + 2n)+ + (Xn − n)+ (4.18b)

u-PV

Xn+1 + Xn = (Yn)+ (4.19a)

Yn +Yn−1 = (Xn−a)++(Xn +a)++(Xn−b)++(Xn +b)+−(Xn +c+n)+−(Xn−c+n)+

(4.19b)

u-PVI

Xn+1+Xn−2Yn = (2n+a−Yn)++(2n−a−Yn)+−(2n+b+Yn)+−(2n−b+Yn)+ (4.20a)

Yn+Yn−1−2Xn = (2n−1+c−Xn)++(2n−1−c−Xn)+−(2n−1+d+Xn)+−(2n−1−d+Xn)+

(4.20b)

We must point out here that the forms given above are the canonical ones. This means

that we have performed all allowed transformations (translations of X and Y , and linear

transformations of n) in order to eliminate redundant parameters and bring them into

standard form. Moreovergiven the form of the equation, we can assume without loss of
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generality that the a, b, c in u-PIII are positive. The same applies to parameter a (but not

b) in both u-PIV’s, a, b, c in u-PV and a, b, c, d in u-PVI.

In order to derive the coalescence cascade of the u-P’s we introduce a large parameter

Ω. The coalescence limits are obtained through Ω → +∞. In the cases of u-PV and u-PIV

we assume that Yn > 0 and, thus, Yn ≡ Xn+1 + Xn. As in the case of the continuous

and discrete Painlevé equations PV has two different coalescence limits. Putting b = 2Ω,

c = Ω − α, n = Ω + m − α we find u-PIV−1 for the variable Xm at the limit Ω → +∞.

On the other hand, introducing a = Ω + α, b = Ω − α, n = 2m − Ω, Xn = Ω + Zm −m,

we find u-PIII for Zm. Starting from u-PIV−1, we put a = Ω + α, n = 2m − Ω − b − α,

Xn = Ω + Zm −m + α and obtain u-PII−1 for Zm. Similarly starting from u-PIII we can

obtain u-PII−1 through a = Ω + α, b = Ω − α, n = m + Ω, Xn = Zm − α. Finally from

u-PII−1 we obtain u-PI−1 by putting a = 4Ω + α, n = Ω − m and Xn = Zm + Ω. It

turns out that starting from u-PII−1 we can also obtain u-PI−2. In this case we must take

a = α− 2Ω, 2n = −3m− 2Ω and Xn = Zm −m/2− Ω.

No coalescence relation appears to exist between u-PV and u-PIV−2: the two equa-

tions do not belong to the same coalescence cascade already in the discrete case. Still

u-PIV−2 is related to a u-PII. In fact, putting a = Ω + α, b = Ω − α, n = m − Ω,

Xn = Ω + Zm − m + α in u-PIV−2 gives us u-PII−2. From u-PII−2 we can get u-PI−2,

provided we put a = 3Ω + α, n = Ω − m and Xn = Ω + Zm. Just as in the case of

u-PII−1, here also we can find a second coalescence. Putting a = −Ω + α, n = −Ω − 2m

and Xn = Zm − Ω−m we obtain at the limit Ω → +∞ equation u-PI−3.

Finally, we must point out that u-PVI is not related to the remaining u-P’s through

coalescence (as expected from what is known in the discrete case). The only relation one

can find is between u-PVI and u-PIII where the latter appears as a reduction of the former.

Indeed taking c = a, b = d and Z2n−1 = Xn, Z2n = Yn in (4.20) allows one to recover

(4.16) for Zn.
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5. Special solutions of the ultra-discrete Painlevé equations

The special solutions of the Painlevé equations play the same role as the multisoliton

solutions for the integrable evolution equations. Solutions of both continuous and discrete

Painlevé equations have been obtained (for particular values of their parameters) either

rational or in terms of special functions. Special solutions exist also for the ultra-discrete

Painlevé equations (except for u-PI which is parameter-free).

Let us start with u-PII−1. We find readily that for a = 0, a solution X = 0 exists.

The next solution for (4.14) is a step-function one. Indeed when n is large, a constant

positive solution exists for a = 4p, with integer p, where X is equal to p while a constant

solution with X = 2p exists when n is large negative. The remarkable fact is that that

these constant “half” solutions do really join to form a solution of (4.14) with p jumps

from the value X = 2p to X = p. The first jump occurs at n0 = 1 − 2|p| and we have

successive jumps of −|p|/p at n = n0 + 3k, k = 0, 1, 2, . . . , |p| − 1.

For u-PII−2 multistep solutions exist for a = 3p with integer p. When n << 0, the

asymptotic behaviour of X is X = a = 3p, while for n >> 0 we find X = p. The multistep

solution is the following: X = 3p up to n = 1− 3|p| then we have |p| times the elementary

pattern of two jumps of −p/|p| followed by two steps with constant value. However the

last two steps of the last pattern are indistinguishable from the asymptotic value X = p

which is therefore obtained at point |p| − 1.

In the case of u-PIII we start by studying the asymptotic behaviours. At n → +∞,

we find that the only simple behaviour of X is X = 0, while for n → −∞ one can

have X = αn + β. In order to simplify our search we will limit ourselves to solutions

connecting a zero half-solution at +∞ to a half-solution with zero slope (i.e. α = 0) at

−∞. We find that the condition is that a and b be of the same parity, and the asymptotic

value of X as n → −∞ is X = |a − b|/2. The multistep solution comprises |a − b|/2

jumps of one (one every three steps). Starting at large positive n, X is zero down to

n = max(a, b) − 1 then enters the multistep region and reaches the asymptotic value
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|a− b|/2 at point n = 1− |a− b|/2 + min(a, b).

For the higher ultra-discrete Painlevé equations we shall contend ourselves with ex-

hibiting just a few simple solutions. Thus for u-PIV−1 we find that a solution X = (−n)+,

Y = −2n− 1, exists whenever a = b. For u-PIV−2, the simplest solution exists for a = 1,

b = 0. We have X = (−n)+ and Y = −n for n ≥ −1, Y = −2n − 1 for n ≤ −1. Finally,

for u-PV, a simple solution can be found for a = b = 0 and c = 2k + 1. In this case,

X = 0 while Yn = 0 for n ≤ −k − 1, Yn = −n− k − 1 for −k − 1 ≤ n ≤ k and for n ≥ k,

Yn = −2n− 1.

The investigation of the most general special solution for each u-Painlevé is still an

open (and highly nontrivial) problem. Still, our analysis above has shown that the ultra-

discrete Painlevé’s have the right structure to possess rich particular solutions. As we

have already pointed out in [], the existence of particular solutions can be used in order

to fine-tune the form of the equation. As a matter of fact, unless the n-dependence of the

u-Painlevé’s is exactly the one given in equations (4.14) to (4.20), no family of particular

solutions seems to exist.

6. The auto-Bäcklund transforms of the ultra-discrete Painlevé equa-

tions

The continuous and discrete Painlevé equations are characterised by a host of interrelations.

These relations are of two kinds: either they connect the solution of one d-P to that of some

other (Miura transformation) or they connect the solutions of a given d-P corresponding

to different values of the parameters (auto-Bäcklund or Schlesinger transformations). As

we will show, analogous relations exist for the ultra-discrete Painlevé equations.

In order to illustrate this, we shall work out in detail the auto-Bäcklund transforma-

tion for u-PII−1. Let us start with the discrete PII:

xn−1xn+1 =
αz(xn + z)
xn(1 + xn)

(6.1)
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where z = λn. We readily remark that (6.1) is invariant under the transformation (I)

α → 1/α, x → z/x. The Miura transformation (M) relates d-PII to d-P34. It is given as

a system:

yn = xn(xn+1 + 1) (6.2)

xn =
ynyn−1 − αz2

yn−1 + αz

Eliminating y we obtain (6.1), while eliminating x we obtain d-P34 for y:

(ynyn−1 − αz2)(ynyn+1 − αλ2z2) = αz(yn + z)(yn + αλz) (6.3)

(The form (6.3) is not the canonical one and a gauge transformation y → z
√

αλy is needed

in order to convert it to canonical form). Equation (6.3) is invariant under the transforma-

tion (J): y → αλy, α → 1/αλ2. In order to obtain the auto-Bäcklund transformation for

d-PII (6.1) one must use the Miura to transform to d-P34, use the invariance of the latter

and come back through the inverse Miura. The auto-Bäcklund (in fact, the Schlesinger)

of d-PII is thus B = M−1JMI. It transforms the solution, x, of d-PII with parameter α

to one, x̃, corresponding to a parameter α̃ = α/λ2. Following the chain of transformation

we find:

x̃n =
z(λxnxn−1 + α(xn + z))
λxn(xnxn−1 + xn + z)

=
αz(λz + xn+1(xn + 1))
λxn(αz + xn+1(xn + 1))

(6.4)

where the expressions of x̃ are equivalent, as a consequence of (6.1). Using the chain

IM−1JM one can compute the inverse Schlesinger leading to α
˜

= αλ2.

The ultra-discrete limit of (6.1) is readily obtained:

Xn+1 + Xn−1 + Xn = a + 2n + (Xn − n)+ − (X)+ (6.5)

(This is not in the canonical form we encountered in section 4, but can be easily transformed

into it). The ultra-discretisation procedure cannot be applied to the Miura (6.2) and,

in particular, to the second half of it. This means that in the ultra-discrete limit we

can compute yn from given xn, xn+1 but the knowledge of yn, yn−1 does not allow us to
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compute xn. Still, the remarkable result is that, while the intermediate step is missing,

the end result (6.4) is ultra-discretisable. Thus one can give the ultra-discrete form of the

auto-Bäcklund:

X̃n = n− 1−Xn + max(Xn + Xn−1 + 1, a + Xn, a + n)−max(Xn + Xn−1, Xn, n)

= a + n− 1 + max(Xn + Xn+1, Xn+1, n + 1)−max(Xn + Xn+1, Xn+1, a + n) (6.6) cr

It is interesting to show that is Xn is a solution of (6.5) corresponding to a parameter

a, then X̃n is a solution to (6.5) corresponding to parameter a − 2. This can be shown

easily if one considers the asymptotic behaviour of the solutions of (6.5). We find that for

n >> 0 the solution behaves like Xn ∼ n/2 + a/4. Inserting this asymptotic solution into

the auto-Bäcklund (6.6) we find that X̃n has a behaviour X̃n ∼ n/2+ ã/4 where, precisely,

ã = a− 2.

In the case of d-PIII (4.6), the auto-Bäcklund transform has been derived in []. It

reads:

x̃n =
xn(β + αδλzxn−1) + α(λxn + zβ)

x2
nδ(λ + γzxn−1) + xn(αδλz + γxn−1)

=
xn(λα + βγzxn+1) + β(xn+1 + αλz)

x2
nγ(1 + δλzxn+1) + xn(βγz + δλxn+1)

(6.7)

where x̃ corresponds to an equation with parameters α̃ = α
√

λ, β̃ = β/
√

λ, γ̃ = γ/
√

λ and

δ̃ = δ
√

λ. The ultra-discrete form of (6.7) is straightforward:

X̃n = max(Xn + b,Xn−1 + Xn + a + d + n + 1, Xn + a + 1, a + b + n)

−max(2Xn + d + 1, Xn−1 + 2Xn + c + d + n, Xn + a + d + n + 1, Xn + Xn−1 + c) (6.8)

or equivalently

X̃n = max(Xn + a + 1, Xn+1 + Xn + b + c + n,Xn+1 + b, a + b + n + 1)

−max(2Xn + c,Xn+1 + 2Xn + c + d + n + 1, Xn + b + c + n,Xn + Xn+1 + d + 1) (6.9)

In the case of d-PIV−1 (4.7) the auto-Bäcklund transformation reads:

x̃n =
1 + αxn

ρzyn−1
(6.10a)
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ỹn =
1 + α̃x̃n

βzxn
(6.10b)

where z = λn and ρ =
√

αβ/λ. Eliminating x and y between (6.10) and (4.7) we find that

the variables x̃ and ỹ satisfy a d-PIV−1 of the same form as (4.7) at point z̃ = zβ/α and

with parameters α̃ = ρ, β̃ = ρz/z̃. The inverse auto-Bäcklund can also be simply given:

xn =
1 + ρx̃n

βzỹn
(6.11a)

yn−1 =
1 + αxn

β̃z̃x̃n

(6.11b)

The ultra-discretization of the auto-Bäcklund is straightforward. We find thus from (6.10):

X̃n = (Xn + a)+ − r − n− Yn−1 (6.12a)

Ỹn = (ã + X̃n)+ − b− n−Xn (6.12b)

where r = (a + b− 1)/2, and an analogous expression from (6.11).

In order to obtain the auto-Bäcklund of u-PV we start with a convenient form of

d-PV:

xnxn+1 = 1 + yn (6.13a)

ynyn−1 =
(xn + µκ)(xn + 1/µκ)(xn + µ/κ)(xn + κ/µ)

(1 + xnλnρ)(1 + xnλn/ρ)
(6.13b)

The auto-Bäcklund transformation reads:

x̃n =
µxn + xn+1/µ + κ + 1/κ

ynλn−1/2
(6.14a)

ỹn+1 =
µ
√

λx̃n + x̃n+1/(µ
√

λ) + ρ + 1/ρ

xnλn
(6.14b)

The x̃, ỹ variables satisfy a d-PV at point z̃ = z
√

λ (i.e. the modified equation is defined

at the points n + 1/2) with parameters: µ̃ = µ
√

λ, κ̃ = ρ, ρ̃ = κ. The ultradiscretization

of (6.13) leads to an equation of the form (4.9) with a = k + m, b = k−m, c = r where k,
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m and r are the respective logarithms of κ, µ and ρ (times ε). The auto-Bäcklund in this

case becomes:

X̃n = max(Xn + m,Xn−1 −m, k,−k)− n + 1/2− Yn (6.15a)

Ỹn+1 = max(X̃n + m + 1/2, X̃n+1 −m− 1/2, r,−r)− n−Xn (6.15b)

¿From the above examples it becomes clear that the construction of the auto-Bäcklund

transformation for u-Painlevé does not present fundamental difficulties. Once the auto-

Bäcklund for the corresponding discrete equation is established, one can proceed to the

construction of the auto-Bäcklund of the ultra-discrete equations. In fact, the procedure

is limited only by the still fragmentary knowledge of the Miura/Bäcklund/Schlesinger of

the discrete Painlevé equations.

7. Conclusion

In this paper, we have presented a systematic derivation of the ultra-discrete analogs of

the Painlevé equations. Starting from the appropriate (multiplicative) discrete forms and

applying the ultra-discretization procedure, we have obtained equations that extend the

Painlevé transcendents to the domain of cellular automata. We have shown that these

ultra-discrete equations possess several properties characteristic of the Painlevé equaitons.

They organize themselves in coalescence cascades, they possess particular solutions glob-

ally defined and they have auto-Bäcklund transformations. An interesting question that

remains open at this stage is whether the u-Painlevé’s can be linearized like their contin-

uous and discrete counterparts.

Another interesting point that will require a deeper investigation is that of an inte-

grability criterion for ultra-discrete systems. In [], we have shown that a first requirement

is that of linear stability. This has made possible to limit considerably the possible forms

of u-Painlevé equations. In the present paper, we have seen, in our analysis of the Riccati

equation, that it is also important that the “backward” evolution be defined. Still, the
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slow-growth criterion, coupled to the existence (and uniqueness?) of a preimage are not

sufficiently strong in order to fix in an unambiguous way the form of an integrable ultra-

discrete equation. In fact the only reliable method at our disposal to produce integrable

ultra-discrete systems is to start from an integrable dicrete system (the singularity con-

finement integrability criterion is fully operative in this case) and apply systematically the

ultra-discretization procedure.
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