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Abstract

We present a cellular automaton equivalent for the 2-dimensional Lotka-Volterra system.
The dynamics are studied for integer and rational values of the parameters. In the case
of integer parameters the motion is perfectly regular leading to strictly periodic motion.
This is still true in the case of rational parameters, but for rational initial conditions
the period becomes progressively longer as the denominator of the initial data increases.
The motion, in this case, loses progressively its regularity resulting to chaotic behavior
at the limit of irrational data.



1. Introduction

Integrability and chaos are the two most important manifestations of nonlinear dynam-
ics. Since they are antithetical notions, their study is a highly specialized one, to the
point that little attention is paid to the transition from one domain to the other. More-
over, while the study of integrability is performed mainly with analytical tools, chaos
is often studied through numerics. This last approach is more often than not question-
able: the numerical approximations and the inaccuracies of the numerical treatment
may alter the qualitative behaviour of the system, unless special precautions are taken.

Given these difficulties, how can one study the integrability-to-chaos transition in
a reliable way? The first step, when one wishes to study numerically a set of continuous
equations of motion, is to discretise them. This discretisation in principle destroys
integrability and may thus introduce chaos that is not present in the initial problem.
The remedy to this, whenever one starts with an integrable continuous problem, is
to implement an integrable discretisation [1,2]. The recently developed technique of
singularity confinement [3] allows one to check the integrability of the discretisation
scheme. Even when one has an integrable numerical scheme, this is not an absolute
guarantee because of the round-off errors in the implementation of the algorithm [4]. The
best way to circumvent this difficulty is to perform the calculation in integer arithmetics.
This is convenient if the discrete problem can be cast in a form where the dependent
variable assumes only integer values. This is precisely the case for cellular automaton
(CA) equations.

The main difficulty that existed till recently for the implementation of this scheme
was that one could not produce CA-systems at request and in particular integrable
CA’s. This obstacle has been bypassed recently thanks to the results of Tokihiro and
collaborators [5] who introduced a systematic way to derive a CA from a given discrete
equation. To date CA equivalents are known for many of the famous integrable PDE’s
[6] and also for some ODE’s like the Painlevé equations [7]. In the present paper we
shall use the CA transcription of a very simple and well-known system, namely the 2-D
Lotka-Volterra (LV) model, in order to study the transition from integrability to chaos.
The advantage of this system is that it has been thoroughly studied in the continuous
case. Its discrete equivalent is also well established and the integrable cases have been
identified [8]. In the following sections we shall begin with a brief recall of the continuous
and fully discrete results. Then we shall present the ultra-discrete transcription of the
LV model, following the procedure of [5]. The study of the ultra-discrete equations of
motion will be presented in the next section showing the gradual onset of chaos.

2. Brief recall of the continuous and discrete 2-D Lotka-Volterra

models

The continuous 2-D Lotka-Volterra model can be described by the simple differential
system:

ẋ = x(a− y)
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ẏ = y(x− b) (2.1)

which can easily be written as a second order ODE for one of the variables. We have
for instance:

ẍ =
ẋ2

x
+ xẋ− bẋ + abx− ax2 (2.2)

Equation (2.1) always has a conserved quantity:

K = x + y − a log y − b log x (2.3)

Thus one could conclude that (2.1) is an integrable system. However, given the form of
(2.3), it is clear that (2.1) is not in general algebraically integrable, since K is not ratio-
nal. In fact, if one performs the Painlevé singularity analysis on (2.1), or, equivalently
on (2.2), one finds that (2.1) does not possess the Painlevé property, unless:

a + b = 0 (2.4)

In this case one finds the invariant:

x + y = Ceat (2.5)

and the integration is reduced to a simple Riccati equation.
The discrete form of the 2-D LV system is also known [8]:

xn+1 − xn = δ(axn − xn+1yn+1)

yn+1 − yn = δ(ynxn − byn+1) (2.6)

or, equivalently:

xn+1 = xn
1 + a

1 + yn+1

yn+1 = yn
1 + xn

1 + b
(2.7)

where we have taken the discretisation step δ = 1.
The mapping (2.7) is not integrable in general. We can examine its integrability

using the criterion known as singularity confinement. It turns out that the integrability
condition is:

(1 + a)(1 + b) = 1. (2.8)

We can rewrite the mapping as:

xn−1 =
1

1 + a
xn(1 + yn)

yn+1 = (1 + a)yn(1 + xn) (2.9)

The integrability of (2.9) is obtained as a special case of the Gambier mapping (analyzed
in [9]). In fact, putting:

wn = (1 + xn)(1 + yn) (2.10)
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we find that (2.9) becomes:

xn−1 =
wnxn

(1 + a)(1 + xn)

yn+1 =
(1 + a)wnyn

1 + yn
(2.11)

The auxiliary variable w obeys a linear equation:

wn+1 = (1 + a)wn − a (2.12)

which can be readily integrated to wn = 1 + K(1 + a)n. Once w is given x and y can
be obtained through the discrete Riccati (homographic) mappings (2.11).

3. The ultra-discretisation of the 2-D Lotka-Volterra system

The ultra-discrete limit of the 2-D Lotka-Volterra system can be obtained in a straight-
forward way following the procedure of reference [5]. We put x = eX/ε, y = eY/ε,
1 + a = eA/ε, 1 + b = eB/ε, and transform (2.7) to:

Xn+1 −Xn = A− ε log(1 + eYn+1/ε)

Yn+1 − Yn = ε log(1 + eXn/ε)−B (3.1)

Next, we take the limit ε → 0 and we use the identity:

lim
ε→0

ε log(1 + eZ/ε) = max(0, Z) = (Z + |Z|)/2 ≡ (Z)+

where the latter is the truncated power function defined as (Z)+ = 0 for Z ≤ 0 and
(Z)+ = Z for Z ≥ 0. The ultradiscrete LV system is then written as:

Xn+1 −Xn = A− (Yn+1)+

Yn+1 − Yn = (Xn)+ −B (3.2)

Equation (3.2) defines a cellular automaton. Indeed, if all A, B, X0, Y0 are integer
(since the truncated power function of an integer yields an integer result) the iteration
of (3.2) leads to integer values.

Let us first remark that we can always ensure B ≥ A. Indeed, if B < A, by ex-
changing X and Y as well as the direction of evolution (towards decreasing n’s instead
of increasing ones) we can convert the system to one where the values of A and B are ex-
changed. Thus we can assume B ≥ A. Moreover, in our analysis we will limit ourselves
to cases where the motion was bounded at least for some domain of initial conditions
which implies that both A and B are positive. In particular the case B = −A corre-
sponding to the ultra-discretisation of the integrable discrete case was ignored because
it leads to unbounded motion. With the assumption of positivity for the parameters A

and B we can introduce a further simplification. If we accept rational values of X, Y ,
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B, we can always assume A = 1 (through a simple scaling). Although this is not of the
upmost importance, it does simplify bookkeeping and it is always simpler to follow a

single parameter. Thus our further analysis will proceed with A = 1 and B ≥ 1. Given
the relative values of X and Y we can distinguish four different determinations of (3.2)
in the X, Y plane. They are represented in Figure 1. The corresponding equations of
motion are as follows:

(I) Xn+1 = B + 1− Yn and Yn+1 = Yn + Xn −B

(II) Xn+1 = Xn + B + 1− Yn and Yn+1 = Yn −B

(III) Xn+1 = Xn + 1 and Yn+1 = Yn −B

(IV ) Xn+1 = Xn + 1 and Yn+1 = Yn + Xn −B

Having these explicit forms of the system for each region one can follow the evolu-
tion without difficulty. As an illustration, let us show that the motion always possess a
stable region delimited by an hexagon. Indeed let us suppose that X and Y are positive
or zero. We obtain in this case the equations:

Yn+1 = Yn + Xn −B

Xn+1 = −Yn + B + 1 (3.3)

If X0 and Y0 are given, we can easily see that the iteration of (3.3) leads to any of the
6 points:

(X0, Y0)

(−Y0 + B + 1, X0 + Y0 −B)

(−X0 − Y0 + 2B + 1, X0 −B + 1)

(−X0 + 2B,−Y0 + 2)

(Y0 + B − 1,−X0 − Y0 + B + 2)

(X0 + Y0 − 1,−X0 + B + 1)

Since we assumed that X ≥ 0, Y ≥ 0 and B ≥ 1 the following inequalities must hold:
B− 1 ≤ X0 ≤ B +1, 0 ≤ Y0 ≤ 2 and X0 +B ≤ Y0 ≤ −X0 +B +2. As a result (X0, Y0)
lies in the hexagonal region with vertices: (B−1, 1), (B−1, 2), (B, 0), (B, 2), (B +1, 0)
and (B + 1, 1) that appears in Figures 2,3,4. By construction, this hexagonal region,
including its boundary, is stable.

4. A study of the ultra-discrete 2-D Lotka-Volterra system
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Let us point out from the outset that most of the results we shall present in this section
were obtained by a combination of analytical and symbolic algebra techniques. In
fact, the CA character of the system makes the computations with a symbolic algebra
program extremely convenient.

We shall not go into all the details of our calculations but limit ourselves to the
most pertinent results. For A = 1, B = 1, the motion is stable if the initial point is
chosen in the interior of the heptagon depicted in Figure 2. The internal hexagonal
region corresponds to stable orbits of the type we have described at the end of section
3. Between the outermost hexagon and the heptagon one we can get orbits lying on
polygons with a number of sides depending on the initial point. In the region outside the
heptagon most orbits escape to infinity but some periodic orbits do exist. Similar results
can be obtained for the A = 1, B = 2 case. Here we distinguish three internal stable
regions bounded by a hexagon, a heptagon and an octagon (Figure 3). In between these
bounding curves the motion is periodic and lies on polygons with various numbers of
sides. Again, oustide the octagon we have escape to infinity for most initial conditions,
but periodic orbits do exist. Finally, for A = 1, B > 2 the stable region is characterised
by two limiting curves: the always present inner hexagon and an outer heptagon with, in
between, stable orbits with various periodicities. In Figure 4 we show these two limiting
curves as well as an orbit that lies between these two. Its construction is straightforward
once we follow the decomposition of (3.2) into four regions.

Thus the dynamics of the 2D LV system seem particularly simple. One gets either
regular bounded or unbounded motion depending on the region one starts from and the
borders can be easily obtained. However the situation can be easily perturbed. Let us
take B = 3/2 (as we have explained rational numbers are easily accomodated in our
scheme thanks to the scaling freedom). First, just as in the cases examined above, there
exists an inner region where the orbits are periodic and lie on some polygon. This region
contains the ever-present inner hexagonal one and is bounded on the exterior by a last
periodic orbit corresponding to a polygon with 11 sides. As previously there exists also
an outer region where most orbits go to infinity. The interesting feature of the B = 3/2
case is that between the two regions of strict periodicity with orbits on polygons and
the outer one of unbounded motion there exists a region of more complicated dynamics.
Let us examine what happens when we iterate a point with initial coordinates X0 = 0
and for Y0 successive approximates of the inverse of the golden ratio. Starting from
Y0 = 2/3 we find that this point is periodic with period T = 29. A higher approximant
Y0 = 13/21 gives a period T = 220 while Y0 = 144/233 leads to T = 1165. Finally
the point Y0 = 610/987 gives T = 11948. A detailed analysis of this case reveals the
existence of two regions separated by an invariant, KAM-like, curve which in this precise
case is a 15-sided polygon. The inner of the two regions is the one we just examined.
The outer one can be explored starting with points X0 = 0 and Y0 equal to half the
values for the other region. We obtain thus for Y0 = 1/3, T = 31, for Y0 = 13/42,
T = 244, for Y0 = 72/233, T = 2099, and for Y0 = 305/987, T = 8462. The iterates
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of these points for the various values of the initial condition Y0 are given in Figures
(5a,b,c,d). In every case the motion is periodic. However, as the denominators of
Y0 increases the period becomes larger and larger. In fact a casual glance at Figures
(5a,b,c,d) would suffice to characterize them as chaotic. Thus the mechanism is clear:
if one considered the evolution of the mapping in R, then the dynamics would be
fully chaotic. Considering successive rational approximations shows how chaos sets in
precisely (although the motion is , strictly speaking, periodic all along).

The consideration of other values of B, 1 < B < 2, does not modify significantly
our conclusions. The value of B influences only the number of the “chaotic” regions: up
to B = 3/2 we have only two of them, while for B > 3/2 more “chaotic” regions appear.
Still, in all cases studied we have obtained the same pattern: chaotic-looking regions
contained between invariant curves with an inner stable region (of strictly periodic
motion) and an outer unstable region leading to escape.

5. Conclusion

In this paper we have used the 2-dimensional Lotka-Volterra cellular-automaton in order
to study the transtition from integrability to chaos. Our approach is straightforward.
We start with equations of motion that can be iterated exactly, provided one works with
rational numbers. By increasing the denominator of the parameters, we approximate
more and more closely parameters that take values in R. For such values the mapping
is not expected to be integrable. What we observe is that the motion, that is strictly
periodic at each successive approximation, has longer and longer periods. Moreover,
the aspect of the distribution of points becomes progressively more and more intricate
and thus one can, based on a visual appreciation, refer to it as chaotic. The advantage
of the present approach is that, working with a CA system, we can perform exact
computations and thus be certain that our results are not contaminated by unreliable
numerics. With the advent of a systematic method for the construction of CA’s from a
given equation, the method we presented here could lead to a systematic approach for
the study of chaos.
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Figure Captions.

Figure 1 : The four evolution domains corresponding to the four different determinations of
(3.2) (See text).

Figure 2 : The domain of stability for the A = 1, B = 1 case.
Figure 3 : The domain of stability for the A = 1, B = 2 case.
Figure 4 : The domain of stability for the A = 1, B > 2 case together with the construction

of an orbit that lies between the two limiting ones.
Figure 5 : Periodic orbits for A = 1, B = 3/2 starting from eight different initial points with

increasing denominators. For all of them we have x0 = 0 while for y0 we take
a) y0 = 2/3 and 1/3, b) y0 = 26/42 and 13/42, c) y0 = 144/233 and 72/233, d)
y0 = 610/987 and 305/987.
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