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aLPN, Université Paris VII, Tour 24-14, 5èmeétage, 75251 Paris, France

bDepartment of Applied Mathematics, Faculty of Engineering, Hiroshima University,

1-4-1 Kagamiyama, Higashi-Hiroshima 739, Japan

cCPT, Ecole Polytechnique, CNRS, UPR 14, 91128 Palaiseau, France

dDepartment of Applied Mathematics, Ryukoku University, Seta, Ohtsu 520-21, Japan

eDepartement of Mathematics, Pondicherry University, Pondicherry, 605104 India

Abstract

Starting from integrable cellular automata we present a novel form of Painlevé equations.
These equations are discrete in both the independent variable and the dependent one.
We show that they capture the essence of the behavior of the Painlevé equations, or-
ganize themselves into a coalescence cascade and possess special solutions. A necessary
condition for the integrability of cellular automata is also presented. We conclude with
a discussion of the notion of integrability of the cellular automata under examination.



A novel extension of the Painlevé equations, well-known for their numerous applications
in mathematics and physics, will be presented in this paper. Recent progress in the
domain of integrable discrete systems has led to the derivation of discrete analogs of the
Painlevé equations [1]. The discrete Painlevé equations are non-autonomous integrable
mappings which, at the continuous limit, go over to the well-known differential equations
of Painlevé. Discrete Painlevé equations were first identified in a 2D model of quantum
gravity where they appeared as an integrable recursion relation for the calculation of
the partition function [2]. With hindsight, their first occurence can be traced back to
the work of Shohat on orthogonal polynomials [3]. To date, the full list of discrete
Painlevé equations has been established [4] and their properties (in perfect parallel with
those of their continuous counterparts) are being actively investigated. The notion of
discrete integrability cannot be formulated in a unique, universally accepted way, a fact
equally true for the continuous integrability. In [5] we have presented a classification of
the various aspects of discrete integrability, which can be used as a working definition.
Thus a discrete system is integrable if it possesses a sufficient number of first integrals
or can be reduced to a linear system or if it possesses a Lax pair.

The study of discrete integrable systems has made clear the fact that they, rather than
the continuous ones, are the fundamental entities. In fact, continuous systems are con-
tained, through appropriate limits, in the discrete ones. A recent discovery has made
possible to investigate the ‘opposite’ limit, that of ultra-discrete systems. A systematic
way for the introduction of integrable ultra-discrete systems was proposed in [6]. In
previous works on discrete systems, while the independent variables were discrete, the
dependent variables were assumed to vary continuously. The ultra-discrete limit pro-
vides a systematic way to discretize the dependent variable also. One can, starting from
a given evolution equation, obtain the cellular automaton (CA) equivalent. The aim
of this paper is two-fold. First, we introduce the ultra-discrete analogs of the Painlevé
equations and investigate their properties and, second, we provide integrability condi-
tions for cellular-automaton like equations. Let us make clear from the outset what we
mean by ultra-discrete Painlevé equations. They are the ultra-discrete limits of discrete
Painlevé equations (the integrability of which is established by a discrete integrability
criterion [7]). These limits are systematically obtained following the procedure of [6]
and which will be summarized in what follows.

Cellular automata have been the object of an impressive number of studies and
their behavior is known to be of the utmost richness. The integrability of such sys-
tems has not been thoroughly studied, since it represents considerable difficulties. An
occurence of an integrable automaton has been noted in [8] by Pomeau who obtained
explicitly its constant of motion. Cellular automata representing evolution equations
have been studied from the point of view of the existence of localized, soliton-like, solu-
tions. The notion of soliton for CA’s was first introduced by Park et al. in [9]. Further
examples of such CA’s with soliton-like structures were given by the Clarkson group
[10]. Integrable CA were introduced by Bruschi and collaborators [11] who derived Lax
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pairs for their cellular-automaton equations. Bobenko et al. [12] have proposed an
interesting approach to integrable CA’s by considering them as the restriction of an in-
tegrable discrete equation over a finite field. However in many cases the relation to the
well-known integrable evolution equations was based on circumstancial evidence rather
than a systematic derivation. The situation has changed recently due to the introduc-
tion of a method [6] that allows one to convert a given discrete evolution equation to
one where the dependent variable also takes discrete values. The starting point was the
CA proposed by one of the authors in collaboration with Satsuma [13]. This simple
model (essentially a “box and ball” system) was shown later to be the ultra-discrete
limit of the KdV equation [6]. This was obtained through a limiting procedure (the
ultra-discrete limit) which allows one to derive a cellular automaton equation starting
from the appropriate form of a discrete evolution equation.

As an illustration of the method and a natural introduction to ultra-discrete
Painlevé equations, let us consider the following discrete Toda system introduced in
[14]:

ut+1
n −2ut

n +ut−1
n = log(1+δ2(eut

n+1−1))−2 log(1+δ2(eut
n−1))+log(1+δ2(eut

n−1−1))
(1)

which is the integrable discretization of the continuous Toda system:

d2rn

dt2
= ern+1 − 2ern + ern−1 (2)

For the ultra-discrete limit one introduces w through δ = e−L/2ε, wt
n = εut

n − L and
takes the limit ε → 0. The well-known result limε→0 ε log(1 + ex/ε) = max(0, x) =
(x + |x|)/2 ≡ (x)+ must be used. The function (x)+ is also known under the name of
truncated power function and is equal to 0 for x ≤ 0 and x for x > 0. Thus the ultra
discrete limit of (1) becomes simply [15]:

wt+1
n − 2wt

n + wt−1
n = (wt

n+1)+ − 2(wt
n)+ + (wt

n−1)+ (3)

Since the truncated power function of any integer is a non-negative integer, it is clear
that if w has initially integer values the values will remain integer at all subsequent time
steps. Thus equation (3) is indeed a cellular automaton equation.

Let us now restrict ourselves to a simple periodic case with period two i.e. rn+2 =
rn and similarly wn+2 = wn. Calling r0 = x and r1 = y we have from (2) the equation
ẍ = 2ey − 2ex and ÿ = 2ex − 2ey resulting to ẍ + ÿ = 0. Thus x + y = µt + ν and we
obtain after some elementary manipulations:

ẍ = aeµte−x − 2ex (4)

Equation (4) is a special form of the Painlevé PIII equation. Indeed, putting v = ex−µt/2,
we find:

v̈ =
v̇2

v
+ eµt/2(a− 2v2) (5)
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The same periodic reduction can be performed on the ultra-discrete Toda equation (3).
We introduce wt

0 = Xt, wt
1 = Y t and have, in perfect analogy to the continuous case,

Xt+1 − 2Xt + Xt−1 = 2(Y t)+ − 2(Xt)+ and Y t+1 − 2Y t + Y t−1 = 2(Xt)+ − 2(Y t)+.
Again, ∆2

t (X
t + Y t) = 0 and we can take Xt + Y t = mt + p (where m, t, p take integer

values). We find thus that X obeys the ultra-discrete equation:

Xt+1 − 2Xt + Xt−1 = 2(mt + p−Xt)+ − 2(Xt)+ (6)

This is the ultra-discrete analog of the special form (5) of the Painlevé PIII equation.
Figure 1 gives a comparison of the evolution under (4) and (6). We remark that the
dynamics are very similar: the two particles converge towards each other, rebound once
or twice, get captured and go on oscillating around some equilibrium point. Thus, start-
ing from a well-known physical problem we have introduced the corresponding cellular
automaton equation and, restricting it to the simplest periodic lattice, we obtained the
ultra-discrete form of a Painlevé equation.

In order to construct the ultra-discrete analogs of the Painlevé equations (u-P) we
must start with the discrete form that allows the ultra-discrete limit to be taken. The
general procedure is to start with an equation for x, introduce X through x = eX/ε and
then take appropriately the limit ε → 0. Clearly the substitution x = eX/ε requires x

to be positive. This is a stringent requirement that limits the exploitable form of the
d-P’s to multiplicative ones. Fortunately many such forms are known for the discrete
Painlevé transcendents [16]:
d-PI

xn+1xn−1 =
αλn

xn
+

1
x2

n

(7a)

xn+1xn−1 = αλn +
1
xn

(7b)

xn+1xn−1 = αλnxn + 1 (7c)

d-PII

xn+1xn−1 =
λn(xn + αλn)
xn(1 + xn)

(7d)

xn+1xn−1 =
xn + αλn

1 + βxnλn
(7e)

d-PIII

xn+1xn−1 =
(xn + αλn)(xn + βλn)

(1 + γxnλn)(1 + δxnλn)
(7f)

We remark that in some cases, more than one form exists for a given d-P. The derivation
of the equivalent ultra-discrete forms is elementary: we introduce λ = e1/ε, take the
logarithm of both sides of the equation and whenever a sum appears we apply the limit
leading to the truncated power function. We find thus:
u-PI

Xn+1 + Xn−1 + 2Xn = (Xn + n + a)+ (8a)
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Xn+1 + Xn−1 + Xn = (Xn + n + a)+ (8b)

Xn+1 + Xn−1 = (Xn + n + a)+ (8c)

u-PII

Xn+1 + Xn−1 = n + (n + a−Xn)+ − (Xn)+ (8d)

Xn+1 + Xn−1 −Xn = (n + a−Xn)+ − (Xn + n + b)+ (8e)

u-PIII

Xn+1+Xn−1−2Xn = (n+a−Xn)++(n+b−Xn)+−(Xn+c+n)+−(Xn+d+n)+ (8f)

These equations describe celular automata provided we restrict the values of the pa-
rameters as well as the initial values of the dependent variable to integers. Note that
equation (6), for m = 2 is the subcase a = b = p, c = d = 0 of (8f) after the change of
variable Xt = Xn + n, (n ≡ t).

At this point two questions appear unavoidable. First, is it justified to call these
equations ultra-discrete Painlevé equations? This is a question we shall address in detail
in our conclusion. Meanwhile we shall show that the ultra-discrete equations we derived
have some properties in common with the familiar Painlevé equations. One first remark
is that the u-P’s form a coalescence cascade just like their continuous and discrete
counterparts [16]. Indeed, starting from u-PIII (8f) we can obtain u-PII (8d) by taking
b → +∞ and c → +∞ such that b−c is finite. Next we translate X and through a linear
transformation of n we find u-PII (8d). The use of the identity (x)+ = x+(−x)+ is also
necessary. Similarly, starting from u-PII (8d) we can put n = −2m− ρ, X = −m− Y ,
a = 2ρ and recover u-PI (8a), for Ym, at the limit ρ → ∞. From u-PII (8e) we obtain
u-PI (8b) simply by putting X = Y − ρ, a = −ρ and b = 2ρ. We can also recover (8c)
from (8e) and (8b) also from (8d). This is not the only property the u-P’s share with
the continuous and discrete Painlevé equations as we shall see below.

The second question is whether it is possible to guess the forms of the u-P’s. In
other words, what is the (integrability) criterion that would single them out among
all possible equations? In the case of discrete systems the criterion for integrability
(equivalent to the Painlevé property) is the property known as singularity confinement
[7]. For cellular automata no singularity can exist and thus this criterion is inoperable.
The situation is analogous to polynomial mappings where no singularity can appear.
There, the criterion for integrability is based on arguments of growth of the degree of
the iterate (or the similar notion of complexity introduced by Arnold [17]). Veselov
[18] has shown that among mappings of the form xn+1 − 2xn + xn−1 = P (xn) with
polynomial P (x), only the linear one has non-exponential growth of the degree of the
polynomial that results from the iteration of the initial conditions. Let us apply such a
low-growth criterion to a family of ultra-discrete PI equations of the form:

Xn+1 + σXn + Xn−1 = (Xn + φ(n))+ (9)
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The three u-PI obtained from (7) correspond to σ = 0, 1, 2. What is the condition for X

not to grow exponentially towards ±∞? We ask simply that the polynomials r2 +σr+1
and r2 + (σ − 1)r + 1 have complex roots (otherwise exponential growth ensues). The
only integer values of σ satisfying this criterion are σ = −1, 0, 1, 2. We remark that
the three values mentioned above are exactly retrieved plus the value σ = −1. A close
inspection of this mapping shows that it is also integrable: it is just a form of an ultra-
discrete PIII, obtained from the discrete system xn+1xn−1 = xn(xn + λn) which leads
to (9) with φ(n) = 0.

We have applied the low-growth criterion to other cases like u-PII and u-PIII and
in every case the results of the growth analysis correspond to the already obtained in-
tegrable cases. However low-growth is not a sufficiently powerful integrability criterion.
In particular the inhomogeneous terms (φ in equation (9)) cannot be fixed by this ar-
gument. Any slow-growing φ(n) would satisfy this requirement. So another criterion
must complement this first one.

In the case of (continuous) evolution equations two integrability criteria are often
used in conjunction: the Painlevé property and the existence of multisoliton solutions.
In the case of Painlevé equations the latter are the special solutions that exist for
particular values of the parameters [19] (except for PI which is parameter-free). A
particular class of these solutions (existing also in the discrete case) are the rational ones.
We shall investigate this property in the case of u-P equations. This will strengthen the
argument that (8) are indeed Painlevé equations and will allow us to fix completely their
form. For d-PII the simplest rational solution is a constant. Thus a constant solution
should exist for u-PII. Instead of working with (8d) we first transform it to a canonical
form through a translation of X and a linear transformation in n:

Xn+1 + Xn−1 = a + (n−Xn)+ − (n + Xn)+ (10)

We find indeed that X = 0 is a solution of (10) for a = 0. However this solution exists
if we replace both n’s in (10) by any function of n. The next solution for u-PII is a
step-function one. Indeed when n is large constant positive solution exists with X equal
to a/4 while a constant solution with X = a/2 exists when n is large negative. Thus, for
instance for a = 4 a solution for n << 0 is X = 2, while for n >> 0 a solution is X = 1.
The remarkable fact is that that these constant “half” solutions do really join to form a
solution of (10) with a unique jump at n = −1. It is straightforward to check that this
will not be the case in general if the non-autonomous part is not linear in n. The general
solution of this type becomes now clear. For a = 4m we have a solution with m jumps
from the value X = 2m to X = m. The first jump occurs at n0 = 1− 2|m| and we have
successive jumps of −|m|/m at n = n0 + 3k, k = 0, 1, 2, . . . , |m| − 1. Analogous results
can be obtained for the other u-PII (8e). Thus u-PII has a rich structure of particular
solutions.

Let us conclude by coming back to the question of whether the ultra-discrete equa-
tions we have derived are justifiably called Painlevé equations. When Painlevé equations
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were first introduced the aim was to extend the notion of function. While linear dif-
ferential equations define the well-known special functions, the aim of Painlevé and
his collaborators was to obtain new transcendents as solutions of nonlinear differential
equations. Already for discrete Painlevé equations the question whether their solutions
define new functions (in the appropriate space) has not been fully answered. What we
are certain about is that the discrete Painlevé’s (just as the continuous ones) satisfy the
three major integrability criteria. These are: the existence of Lax pairs, the “Painlevé
property” and the existence of “multisoliton” solutions. The first corresponds to a
purely constructive approach while the second is based on the singularity structure and
uses singlevaluedness as a necessary condition for the definition of a function. The third
criterion is a practical one. Integrability is conjectured whenever there exists a rich class
of solutions which are globally described and are interrelated by various transformations.
In the case of ultra-discrete systems the application of these criteria does not lead to
a clear answer as in the discrete case. The Painlevé criterion based on singularities is
clearly inapplicable here because of the absence of singularities. Some progress has been
recently done in the direction of Lax pairs [20] and could presumably be extended to
ultra-discrete Painleveé equations. Fortunately, the third, more practical, criterion can
be easily extended to the ultra-discrete domain. Work is in progress on this point and
our first results [21] show that the ultra-discrete systems we introduced here do possess
rich families of solutions which, moreover, are related by the ultra-discrete equivalent
of Bäcklund transformations. Thus the analogy between what we called ultra-discrete
Painlevé equations and their discrete and continuous homonyms is strengthened. A last
argument is based on the systematic character of the ultra-discretisation. The proce-
dure is not an ad hoc one but starts with an integrable discrete system and derives in
an unambiguous way its ultra-discrte equivalent. Although tha above arguments do not
constitute a proof that the cellular automaton Painlevé equations define indeed non-
linear transcendents in the ultra-discrete domain they do constitute some convincing
evidence. We plan to further strengthen these arguments by studying the higher u-P’s
together with their properties.

The questions left open here (or at leats some of them) will be addressed in future
works. What is important at this stage is that we have shown that this new domain of
integrable systems is particularly rich. While the discrete systems are the fundamental
entities and contain all the structure, the cellular automata are their bare-bones versions
capturing the essence of the dynamics. This explains the interest that these ultra-
discrete systems present both from the mathematical and the physical points of view.
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Figure captions.

Figure 1. Distance between the two particles as a function of time in the case (a) of the
continuous Toda potential and (b) its ultra-discrete analog.

8


