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1 Introduction

In 1990, a soliton cellular automaton was discov-
ered by Takahashi and Satsuma[l]. This system is
now called 'box and ball system’ and is defined by a
simple rule using an array of boxes and a finite num-
ber of balls. It is a pure soliton system because any
state is constructed from solitons and there are an
infinite number of conserved quantities|2]. However,
its algebraic structure, especially a relation to known
continuous soliton systems, was mysterious for a long
time. Because all variables are discrete including a
dependent one and it was difficult to apply known
tools to analyze soliton systems.

The breakthrough came in 1995. In the year, a
grandchild of Toda lattice equation now called 'ultra-
discrete Toda lattice equation’ was discovered(3].
Soon later, a limit process ’ultra-discretization’ was
discovered and we found that the above box and ball
systemn is equivalent to a ultra-discrete Lotka-Volterra
equation[d].

Now, we know how to make the third generation
of soliton equations. The new generation has the
following features: (1) It is produced from the sec-
ond generation, that is, fully-discrete soliton equation
with discrete independent variables and continuous
dependent. ones.  The relationship of three genera-
tions are shown in Fig. 1. (2) Its variables arc all dis-
crete including dependent variables. Therefore, the
third generation is a cellular automaton (CA). (Here,
we use the word ’cellular automaton’ in the extended
meaning, that is, dependent variable can take any of

integer values.)

continuous soliton equation (first generation)
!
discrete soliton equation (second generation)

l

ultra-discrete soliton equation (third generation)

Figure 1: Relationship of three generations of soliton

equations.

In this article, we will report details of structure of
ultra-discrete Toda lattice equation and its relation
to the continuous equaiton(5).

2 Ultra-discrete Toda Lattice
Equation

In 1967, Toda discovered the Toda lattice
equation[6]:
d?*r,
— =
where latlice number n is discrete, time ¢ is continu-
ous, and A% f,, = f,.11 = 2fn+ fu—1. This equation is
the first generation of Toda family. Ten years later,

Akem (1)

Hirota discovered the discrete Toda lattice equation
(d-Toda)(7}:

A%t = A2 log(1 + 6%(c™ — 1)) , (2)

where A2 ft = ft+1 27t 4 ft=1 This equation is the
sccond generation because all independent variables,
n and ¢t are discrete. If we take uf, = r,(6t) and
6 — 0, we obtain eq. (1) from eq. (2). Therefore,

Toda lattice equation is a limit equation of d-Toda.



Next, we take another specific limit of d-Toda. In
this limit, we use a key relation:
limoslog(c"/s +ePley .. -y =max(A4,B,---), (3)

e—t

especially,
EETOslog(l + e4/¢) = max(0, A) . (4)
If we set ul, = Ul /< and § = exp(—L/2¢), we have
AUE = A2 max(0,UL - L) . (5)

This equation has a remarkable feature: If initial data
(e.g. U2 and U}) and L are all integer, U} for any
n and (¢ is always integer. Therefore, this equation is
CA because all variables are discrete. We call eq. (5)
‘ultra-discrete Toda lattice equation’ (u-Toda) and
call the limit process from eq. (2) to eq. (5) via the
relation (3) ’ultra-discretization’.

Then, a natural question occurs: Is u-Toda a soli-
ton equation, in other words, does u-Toda have N-
soliton solution? The answer is yes. We show it by
a 2-soliton solution as a typical example. 2-soliton
solution of d-Toda is written by

ul, = A2 log fL (6)

and f! is a 7-function of d-Toda,

f,l, =14 e 4 82 +a12651+€2 , (7

where
&i=kin—wit + &, (8)
sinh(w;i/2) = o;§sinh(k;/2) , (9)
gi=+lor —1, (10)

0109 — cosh %(kl +wy —ky —wy)

Qi = 11
Oldz—COS}lrzl-(kl +w1+k2+w2)( )
Here ki and € are arbitrary parameters. If we intro-

duce new paraneters iy, ; and =9 as

n

ki=Kife, wi=Q/e, & =20¢, (12)

we obtain 2-soliton solution of u-Toda in the limit

€ — 40 as follows:

(jvlt=Ailnax(oislv—i?vsl+EZ+AIZ) ) (13)

where
Zi=Kin—Qit + 20, (14)
Q; = o;(max(0,k; — L)
—max(0, —k; — L)) (15)
gi=+lor -1, (16)
=2min(|I], [K2]) + L,
ifop=09= -1

Az = { max(min(K; + ), —K; — Q3,), (17)
min(— K, — Q,, K2 + Q,)) ,
otherwise

Two examples of solution are shown in Fig. 2. Fig-
ure 2 (a) shows a head-on collision of 2-soliton so-
lution of u-Toda where .’ denotes 0. Figure 2 (b)
shows an interaction of 4 solitons. In both figures,
non-zero numbers behave as soliton and phase shift
occurs after the interaction.

Finally, we show the transition process of solution
from d-Toda to u-Toda. To see this, we do not take
the limit € — 40 after introducing € into the solution
u!,. Figure 3 shows 2-soliton solutions Uf (= eul) at
a fixed time ¢ with the same parameters other than ¢.
When ¢ is large, the profile is smooth and values of U}
on lattice points n are fractional. However, as £ be-
comes smaller, pulses become sharper and all values
on lattice points go to integer rapidly. Therefore, we
can consider that ultra-discretization is not a subtle

limit and d-Toda changes to u-Toda smoothly.
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Figure 2: (a) Head-on collision of 2 solitons. (b) In-
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Figure 3: Transition from d-Toda to u-Toda.
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