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§1. Introduction

A quarter century has passed since Zabusky and Kruskal discovered solitons in the
numerical computation of the Korteweg-deVries equation[l]. The concept of solitons
has been widely introduced in various nonlinear wave systems. We now realize that
solitons play important roles to transport energy, information and so on in the wave
systems.

In this paper, we present some results on two extreme cases in which solitons arise:
The cellular automaton which may be considered to be one of the simplest soliton system
at present, and the optical communication system where the solitons are considered to
be a quite advantageous entity.

§2. Soliton Cellular Automaton

Cellular automata ( CA’s ) are simple models which are introduced to understand
the complex physical, chemical and biological phenomena[2]. In some cases of the one-
dimensional CA, strings of bits behave like solitons, namely interact with one another
preserving their identities. The filter automaton which has been proposed by Park,
Steiglitz and Thurston is one of the typical system where soliton collisions are quite
common|3-5].

Recently, Takahashi and Satsuma proposed a CA of the filter automaton type
in which any state only consists of solitons[6]. The CA is one-time and one-space
dimensional and two-valued. The evolution rule for the CA is given as follows: Let u}
be 1 or 0, which denotes the value at integer time ¢ and at integer space site j. Ranges
of t and j are both from —oco to +c0 and it is assumed that u} = 0 for j far enough to
the left and to the right. The variable u} obeys :

uttl = {1 if u} =0 and SUZ ut> Il utt ) (1)
! 0 otherwise

It is to be noted that this rule is spatially nonlocal. If we introduce S} by St =
! o U, then the rule (1) may be rewritten by

1
St =St = (1= 8+ S)(Sj - ST +6 - 1S - St -8, (2)

where § is a constant satisfying 0 < § < 1.
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---00001111000000000001100011000001000000000000000000000000000000 - - -
-+-00000000111100000000011000110000100000000000000000000000000000 - - -
---00000000000011110000000110001100010000000000000000000000000000 - - -
---00000000000000001111000001100011001000000000000000000000000000 - - -
---00000000000000000000111100011000110100000000000000000000000000 - - -
--00000000000000000000000011100111001011000000000000000000000000 - - -
---00000000000000000000000000011000110100111100000000000000000000 - - -
--00000000000000000000000000000110001011000011110000000000000000 - - -
---00000000000000000000000000000001100100110000001111000000000000 - - -
--00000000000000000000000000000000011010001100000000111100000000 - - -
--00000000000000000000000000000000000101100011000000000011110000 - - -
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—
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Figure 1. Example of time evolution according to eq.(1)

There exist two types of solitary waves in this CA. The first is the “simple solitary
wave” which consists of only one sequence of an arbitrary finite number of 1’s. The
speed of this wave is equal to the number of 1’s. The other is the “compound solitary
wave” which includes an arbitrary finite number of simple solitary waves of the same
length and apart from one another at a distance equal to or greater than the length.
The speed of this wave is equal to the length of the simple solitary waves included.

Figure 1 shows an example of interaction among two simple solitary waves and
one compound solitary wave. We see that three waves recover their identities after the
collision. The only effect of collision is the phase shift. We define a phase shift of each
wave by the shift of its site number caused by the interactions with other waves. The
faster solitary wave gains the phase shift of the double of the number of 1’s of the slower
one, and the slower loses the same amount. Hence these solitary waves are considered
to be solitons. In fact, we can prove that all solitary waves conserve their identity in
the time evolution (see [6] for the detail).

One of the remarkable properties of soliton systems is the existence of an infinite
number of conserved quantities. The CA we are discussing also has such quantities. Let
us difine the number of the basic strings as follows; §101 is the number of 101 in the se-
quence at a certain time. For example, §101 is 2 for the sequence, - - - 00011010100100- - -.
It is not so hard to prove for the CA that {1, $11, 1101 + $0010, §110101 + 4001010,
and so on conserve in the time evolution.

As we mentioned before, any state of the CA consists only of the solitons. Moreover,
we can identify solitons for any state of the CA, which means that the initial value
problem is solved exactly. Therefore, this CA may be considered to be one of the
simplest analog of soliton equation. We remark that the spatial nonlocality of the rule
of time evolution may yield such a remarkable property.

Finally in this section, we give another representation of this CA. Let us introduce
the multi-valued variable v} by

+1 if u,’- =1
v;- = v;-_l +{ -1 ifuj=0and vi_; #0 - (3)
0 otherwise
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Then, for example, we have the following correspondence between u!

t.
+ and vj;

--0000000001110010110000000000 - - -
--0000000001232121232100000000 - - -

t
U
t
Y;

§3. Optical Soliton with Two Peaks

One of the most succesful applications of soliton phenomena in engineering is optical
communication. Since Hasegawa and Tappert discussed the possibility of soliton prop-
agation in optical fibers and the prediction was cofirmed by experiment later on, many
theoretical and experimental studies have been done to achieve a communication sys-
tem based on optical solitons[7]. Among them, the higher-order nonlinear Schrédinger
(HNLS) eqation,

1 2 :
20 L g+ il + Bl L+ g Ay =0, ()
is proposed to understand the higher order effect which can not be explained by the NLS
equation ( € = 0 in eq.(4))[8,9]. There are a few cases where eq.(4) is exactly solvable;
(7) the derivative NLS equation-typel (81 : B2 : B3 = 0: 1: 1), (i7) the derivative NLS
equation-typell (B : B2 : B3 = 0: 1: 0), and (¢i7) the Hirota equation (8, : B2 : B3
=1:6:0).

Very recently, Sasa and Satsuma have shown that eq.(4) is also solvable by the
inverse scattering transform if the condition, By : B2 : f3 = 1 : 6 : 3, is imposed[10].
In this section, we briefly comment on the result and discuss about the property of the
soliton solution.

In order to analyze eq.(4) with the coefficients, f; = 1, f2 = 6 and f3 = 3, it is
rather convenient to introduce variable transformations,

—i T T
u(z,t) = o(X, T)exp{=(X = 72)}, t=T, z=X~ o (5)
Then, eq.(4) is reduced to a complex modified KdV-type equation,
0u O3u ,0 (9[ 12y
ot (3 3+6l I Oz )"0: (6)

on which we can formulate the inverse scattering scheme written by the 3 x 3 Lax pair.
The one-soliton solution obtained by using the inverse scattering transform may be
written in the following form:

ne'B{2coshA + (c — 1)e=4}

oX,T) = cosh(24 —log|c|]) +|c| ’ (M

where
A=q[X —{€-e(n® - 36)}T - X, (8a)
B =€[X + {(n* — €1)/(26) + «(€? - 39")}T — X)), (36)
c=1-1in/{€—1/(6e)}. (8¢)

If we take the limit of € — 0 (c — 1), eq.(7) reduces to the one-soliton solution of the
NLS equation as is expected. On the other hand, if we take the limit of & — 1/(6¢) (|c|
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Figure 2a. |g| for n = 2 and |c| = 1.5. Figure 2b. |g| for 7 = 2 and |¢| = 5.0.

— 0), eq.(7) reduces to another sech-type solution,

X, T) = %exp{é(X—IIET—X(I))}sech[n{X—(eq2+I;—G)T—X(O)}—Hog\/i]. (9)
We note that eq.(9) does not tend to the NLS solution in the limit fo € — 0. In a sense,
eq.(9) gives a singular soliton solution for the perturbed NLS equation.

The shape of |q| depends on the parameters 7 and |c|. If 1 < |¢|] < 2, |g| has only
one maximum (Fig.2a). Note that |c| = 1 corresponds to ¢ = 0 which is the case of the
NLS equation. On the other hand, if |c| > 2, the soliton solution shows an interesting
feature. In this case, |q| has two maxima (Fig.2b). This type of soliton has not yet
been reported for the higher-order NLS equation. We remark that, if we take the limit
of |¢| — oo, the hump at the right-hand side moves to infinity, and the hump remained
becomes the soliton solution (9).

We have shown by means of the inverse scattering transform that the higher-order
NLS eq.(4) has an interesting soliton solution which propagates steadily with two peaks
of the same height. Interesting problems are in what condition such a soliton appears
and whether the soliton is stable or not under certain perturbations. Finally in this
section, we show the partial result on the problem by using the numerical computation.

We have solved eq.(4) with 8 = 1, 8, = 6 and $3 = 3 numerically for the initial
value ¢(X,T = 0) = sechX. If € = 0, this initial value just gives the one-soliton solution
of the NLS equation, and therefore |q| does not change in the time evolution. Figure 3
shows the numerical result for ¢ = 0.1. We see only a slight change of the initial wave
form. The behavior is comparatively similar to that of the NLS solitons.

On the other hand, we have a quite different behavior if ¢ is large. Figure 4 shows
the numerical result for e = 0.5. We see that the sech-type solitons appear in the course
of time again, although the shape is different from that in Fig.3. We interpret this result
as follows: In this case, the second and third terms in eq. (4) may be ignored. Then,
since eq. (4) is regarded as the modified KdV equation approximately, the solitons in
Fig.4 are close to those of the equation.

The numerical result for the intermediate value of € (¢ = 0.195) is given in Fig.5.
The soliton with two peaks seems to appear. However, when we eliminated the ripple
part at T = 30 and calculated further, we observed that it behaves like the breather
solution. This means that the observed pulse is not the soliton (7) itself. However,
our result shows the chacteristic structure of the soliton with two peaks is seen in the
numerical solution for this value of .
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at T = 30.
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