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I. INTRODUCTION

In the mantle of the Earth, rock is partially melted. Melt phase ( melt ) and solid
phase ( matrix ) convolute each other complicatedly. Since the density of melt is smaller
than that of matrix, melt migrates through the solid interstices. The flow becomes like
a porous flow because of this phase mixing. Several researchers studied such a flow and
proposed model equations. In 1984, Scott and Stevenson [1] proposed a set of equations
which describes the evolution of vertical distribution of melt phase and is equivalent to
the following dimensionless equation;

(1) up = [u{(v ™), — 1},

where u is the volume fraction of melt ( porosity ), t is the time, and z is the vertical
space coordinate. Parameters n and m denote the dependency of a matrix permeability
k and an effective viscosity n characterizing the rate of matrix compaction and distension
as k oc u™ and n &< u™™, respectively. The reasonable values of n and m are 2 ~ 5 and
0 ~ 1, respectively. We call (1) the magma equation. Scott and Stevenson numerically
showed that pulse-like solitary waves interact one another like solitons.

The magma equation appears in another simple physical situation. It is the flow
of two kinds of fluid of which densities are different. If a low-density fluid is injected
continuously from a tube at a bottom of a tank filled with a high-density fluid, the former
migrates through the latter and forms a thin pipe. If the flux of low-density fluid is
controlled at the entrance, the shape of pipe becomes hump-like. Scott, Stevenson and
Whitehead [2] studied the interaction of the humps experimentally and found that they
behave like solitons. A set of equations which describes such a flow is also proposed by
them. It reduces to the following dimensionless equation;

(2) ug + auu, + Blugu,; — UUzz) =0,

where u is the horizontal cross section of the low-density fluid, ¢ is the time, z is the
vertical space coordinate and a, f are constants. Equation (2) is equivalent to the
magma equation forn =2 and m = 1.

In a preceding paper [3], we have shown explicit travelling wave solutions of (1)
for some particular choices of the parameters n and m, and discussed the existence of
weak solutions with compact support. Moreover, we proposed a modified version of
(1), which reduces to the Korteweg-de Vries (KdV) equation by means of a variable
transformation.

In this paper, we give a brief summary of the preceding paper and present some
further results on the magma equation. A detailed account will be given in a forthcoming
paper [4].
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II. EXPLICIT ANALYTICAL TRAVELLING WAVE SOLUTIONS

In this section, we give explicit travelling wave solutions of (1). Here and hereafter,
we confine ourselves to the case n = 3 and m = 0 for simplicity. N amely we consider

(3) Ue = [us(ut: -1)]: .

Then, substituting u = u(z), z = z — ct into (3) and integrating twice with respect to

z, we obtain an ordinary differential equation governing the travelling wave solutions,
€ 2 1 3 2

(4) 5u,=—u—2(u — Bu® +cu—A),

where c is the wave velocity, and A, B are integration constants. If we introduce a
transformation of the independent variable from z into ¢,

(5) C=/ u~ldz
then, (4) is reduced to
(6) g-uz =—(u® — Bu® + cu — A) = — f(u) ,

the solutions of which are expressed in terms of the Jacobian elliptic functions. Let us
assume that f(u) is factorized as

(7 flu)=(u—w)(u—uz)(u—us), ugr Sus<uj.
Then a regular solution of (6) is given by
(8) u=1uz +(uz —uz) en’p(

where p = /(u3 —u;)/2c and cn is the Jacobian elliptic function with the modulus
k=4/(u3 —u2)/(us — u;). The inverse transformation of (5) is given by

¢
(9) z= / ud( .
Substituting (8) into (9), we get
(10) z=u{ + v/ 2c(uz — uy ) E(s; %),

where s = snp{ and E(s; k) is the elliptic integral of the second kind defined as E(z;k) =
V(1 — k%#2)/(1 — #2)dt. Equations (8) and (10) give a periodic wave solution for
0

uz > 0. The period L is calculated as L = /8¢/(us — u1) {K(k) + (us — u1)E(k)},
where K(k) and E(k) are the complete elliptic integrals of the first and the second kind,
respectively.

If we take a limit of ¥ — 1 or u; — u; in (8) and (10), we obtain a solitary wave
solution

(11) u = u; + (us — up) sech’p( ,

(12) z = us( + \/2c(u3 — u;) tanhp( .

These solutions may correspond to the numerical solutions obtained by Scott and
Stevenson [1].
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There exists another variable transformation by which solutions can be expressed
explicitly in terms of the Jacobian elliptic functions. Let us transform z into ¢ as

(13) ¢= [Turas.

Then (4) is reduced to

(14) -;-u% = —u(u® — Bu? + cu — 4) ,

from which we obtain a singular periodic wave solution

(15) w= u1u3sn2pC
uz — u3(1 —sn?p() ’

(19 =L [r( k) - (1 - 2 (s + YEZ D F)Y)

where u; > 0, p = /ua(u3 — uy)/2¢, s? = 1—(1-sn?pQ)u, fus, k2 = (uz —u2)/(uz —u;),
and F is the elliptic integral of the first kind defined as F(z; k)
z

= / 1/v/(1 — £2)(1 — k?#?)dt. The maximum and the minimum values of the above
0

periodic solution are u; and 0, respectively, and the gradient of u(z) is infinite where
u = 0. The configuration of u(z) is shown in Figure 1.
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Figure 1. Singular periodic wave solution u(z) described by (15) and (16).

III. COMPACT SUPPORT SOLUTIONS

It is formally possible to cut off one hump of the singular periodic wave given in the
preceding section. If we force u to be zero outside the hump, we obtain a weak solution
as shown in Figure 2. It satisfies the magma equation except the feet at z = z; and z,.
We here consider the validity of the existence of such a weak solution. |

u
u 1F--=-=-=----
Figure 2. Solitary wave solution with compact
support constructed from the solution
o Z; Z; —_ of Figure 1.

216



Let us assume that there exists the weak solution as shown in Figure 2, which
satisfies (4) on z; < z < z;. Then

(17) —cu = u¥(—cu;; — 1) — 24,

holds on z; < z < z;. We note that the integration constant A can not be zero because
of the balance of the both sides of (4). On the other hand, in the outside region, z < z;
or z > 27,

(18) —cu = u¥(—cu,; — 1),
holds because u = 0 there. Hence, the solitary wave solution satisfies
(19) ur = [u(uez — 1))z + 24{8(z — ct — 23) = §(z —ct — 1)},

where §(z) is the Dirac’s delta function. The last two terms of the right-hand side may
be interpreted as source terms for u. Equation (19) equation conserves the total mass,

o
/ udz. Hence, if the solitary wave solution is applied to (3) which has no source

ter;s, the balance of mass u breaks at the feet of the hump and the solution should
change its shape or diverge.

It is suggested from the above argument that solitary wave solutions with compact
support are not possible for (3). However, it is probable that such waves exist in real
physical systems. We believe that the basic equation should be modified in order to
describe them. Still then it is an interesting problem to investigate how the initial data
with compact support develops in time for (3).

We here show a result of numerical computation for the initial condition of the
single hump given by Figure. 2. The time evolution is calculated with a finite-difference
scheme using a potential of u. Figure 3 shows the time development of the profile.

The mass moves to the right more rapidly than the right hand endpoint, and, since
the area under the profile must remain constant to conserve mass, the wave steepens
as a result of this motion. As the profile steepens and moves to the right, a single
solitary wave separates off moving with a constant velocity and profile. This process
then repeats as the mass remaining behind the solitary wave(s) splits into another
solitary wave ( each smaller than its predecessor ) and a remainder. At approximately
t = 10, the profile contains a peak which is, apparently, as steep as can be represented by
the numerical grid. Therefore, there exists a possibility that the current results would
be of the numerical damping due to the use of finite-difference differentiation. We
calculated the same initial value problem with a different number of grid points or with
radically different numerical scheme. The results coincide with the above qualitatively.
Therefore, it may be suggested that the given numerical results should correspond well
to the behavior of a physical system modeled by (3).

The second observation on these results is that the leading solitary wave resembles
an analytical solitary wave with very low constant base which is described by (11) and
(12). Figure 4 shows a comparison of the leading solitary wave obtained numerically
with an analytical solitary wave solution described by (11) and (12); the solid line shows
the former and the dotted one shows the latter. Though they are different especially
near the z-axis because their origins are quite different, their profiles are very similar
to each other as a whole. This argument may be valid for other smaller solitary waves
released from the initial hump with compact support. From above discussions, we
conclude that an initial data with compact support breaks into some quasi-stable waves
which are very similar to solitary waves with low constant base described by (11) and
(12), with the help of a damping or a diffusing effect undescribed here.
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Figure 3. Numerical experiment on the time evolution of the solution of Figure 2.

N

Figure 4. Comparison of the leading
solitary wave with an analytical solitary
wave described by (11) and (12). The
straight line indicates the former and the
dotted line the latter.
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IV. MODIFIED MAGMA EQUATION

The magma equation has solutions which behave like solitons. Moreover, the results -
of numerical computation suggests that it may not be integrable. In this section we
propose a modified equation which is related to (3) and integrable. The equation is
written as :

(20) ur + [u*(3uzz + 1)), = 0.

We call this the modified magma equation. It is noted that (20) has been introduced
by Ito and Kako [5] as an example which possesses higher order conserved quantities.
In the long wave and small amplitude approximation, both (3) and (20) have the linear
dispersion relation of the type

(21) w=ak—Fk.

If we introduce new independent variables ¢ and T by

(22) €= /tu"ldz ,

(23) T=t,
then (20) reduces to the KdV equation,
(24) U, + Buue + ugee =0 .
By using this fact, we can construct the solitary wave solution with finite constant base
of (20),
3 2 g2l 3
(25) u=c+ 3P sech g(p(f + 6¢ct) — 3p°1)

(26) z=cf+ 3ptanh%(p(£ + 6c7r) — 3p*r) ,

where c is the height of constant base. The solution is quite similar to (11) and (12).
Since the KdV equation has N-soliton solution, (20) also has N-soliton solution which
describes the interaction of solitary waves of the type (25) and (26).

It is also possible to construct solutions with compact support of (20) from the
soliton solutions of the KdV equation. Let us take the 1-soliton solution of (24),

(27) | u(€,7) = SpPsech? 2(p€ — 35°7)

where p is an arbitrary parameter. Through the variable transformation (22) and (23),
(27) reduces to

3 2
(28) u(z, 1) = { 30 -2, Jol < Vb,
0, lz| > v3p,

which is a stationary solution with compact support. We note that the incline of u at
the feet is finite. If we take the 2-soliton solution of (24) which vanish as £ — +o0, we
get a nonstationary solution with compact support of (20). Figure (5) shows a typical
example of time evolution of such a solution.
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Figure 5. Time evolution of a solution for (20) constructed from the 2-soliton solution
of the KdV equation.

Furthermore, if we take the N-soliton solution of (24), we obtain a nonstationary
solution describing the interaction of NV humps. We note that exact solutions describing
this type of interaction of pulses with compact support have been obtained for a nolinear
diffusion equation [6].

By using the fact that (20) reduces to the KdV equation through the transformation
(22) and (23), we can show the modified magma equation has an infinite number of
conserved densities. Let a conserved density of the KdV equation (24) be denoted by I,

which satisfies aa;_- / Id¢ = 0. Then, by transforming the variables { and 7 into z and
)

t, we find that the corrsponding conserved density of the modified magma equation (20)

is I /u satisfying 3t / —dz = 0, where z; and z, are positions of both ends of the

positive part of solution. Smce one of the conserved densities of the modified magma
equation is 1 corresponding to the conserved density u of the KdV equation, we find
that the width of compact support.is conserved.

Although we do not know any physical relevance of (20) yet, we hope that it plays
a role as a clue to the analysis of the systems exhibiting the behavior shown by the
above solutions.
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