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A new finite difference method to compute the motion of fluid with free surfaces
is proposed. This method is an improvement on the marker and cell method and by
applying it the configuration of fluid regions can be visualized including free sur-
faces with fewer memories by the rearrangement of markers. For three-dimensional
calculation of the effect of surface tension, a statistical method is introduced that
saves computational time without loss of accuracy.

The computational results are shown for the splashing of a droplet, collision of a
droplet with a rigid wall and collision of two droplets in axisymmetrical, two-dimen-
sional and three-dimensional situations.

[. INTRODUCTION

In recent years, there has been increasing interest in the analysis of the motion of fluids
with free surfaces. In particular, there are many interesting phenomena in the action of
small drops such as ink jets or milk crowns.

The MAC (marker and cell) method?’ and the time-dependent grid generation method?
are numerical methods simulating fluid motion with free surfaces. The latter has the ad-
vantage that it is easy to determine the configuration of the free surface with high accuracy.
However, it is difficult to apply this method in order to calculate great deformation, merg-
ing or splitting of the fluid because it is necessary to reform the grid system.

In general, the MAC method requires a large memory and long computational time to
treat the free surface. Moreover, in small-scale motion, the surface tension plays an im-
portant role in surface deformation. Therefore, few calculations have been performed for
large deformation or three-dimensional cases.

We calculate the pressure at the surface by the curvature determined by the array of
markers which approximate the configuration of the free surface and use fewer markers
in the surface cell and rearrange them at each time step.

A smaller memory and shorter computational time are needed for the above-mentioned
treatment of the surface. Consequently, we can perform three-dimensional calculations
more easily. In this paper, several motions of droplets are calculated in two-dimensional,
axisymmetrical and three-dimensional cases by using our improved MAC method.

I1. BASIC EQUATIONS AND NUMERICAL SCHEME
OF SOLUTION
The governing equations that describe the motion of the fluid are the equation of con-

tinuity and the Navier-Stokes equation. In Cartesian coordinates, they are written as
follows:
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where u is the velocity vector, p is the pressure devided by the constant density and y is
the kinematic viscosity. By taking the divergence of the Navier-Stokes equation, we get
the Poisson equation for pressure:
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These equations are applied only in the fluid region.
In the finite-difference calculation, basic equations are approximated as follows:
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where At is the interval of time differencing and the index »n denotes the number of the
time step. The first term of the right-hand side of Eq.(5) is put in order to set D»*1 = 0.
For space differencing, all derivatives are approximated in the form of central differenc-
ing.
On the free surface, the surface boundary conditions are as follows:
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where 7 is surface tension and R; and R, are the principal radii of curvature of the free
surface which are positive when the center of curvature exists inside the fluid region and
negative when it is outside the fluid region. As it is difficult to apply all the above conditions
in the finite-difference calculation, we only take account of the surface tension effect, the
second term of the right-hand side of Eq. (9). The surface pressure is equal to 7(1/R; + 1/
Ry) and the velocity is extrapolated from the velocity inside the fluid region.

III. ALGORITHM OF CALCULATION

Using the basic equations, we simulate the fluid motion with the following algorithm
(for simplicity, the situation is assumzd to be two-dimensional). For example, the fluid
region, the vacuum region and the wall are arranged as in Fig. 1a. The circular fluid region
has downward velocity due to the gravity effect. We first make a regular mesh for the whole
region (Fig. 1b). A unit of mesh is called a “cell.”” The physical quantity of each cell is re-
presented at its center. To approximate the fluid region, markers are placed as in Fig. Ic
and they are assumed to move with the velocity of the fluid. It is important to place markers
finely enough on the surface because the configuration of the surface is essential to deter-
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Fig. 1. Concept of MAC method.

mine the motion of the fluid. Then each cell is classified as empty (E), full (F), surface
(S) and wall (W) cell. The rule of classification is as follows:

1) a cell in the wall region is a W cell;

2) a cell in which no marker exists is an E cell;

3) a cell in which some markers exist and which is adjacent to an E cell is an S cell;

4) other cells are F cells; and

5) some S cells not adjacent to F cells are renamed E cells.

An example of classification is shown in Fig. 1d. This classification roughly shows the
configuration of the fluid region and each kind of cells is treated differently in the computa-
tion. The basic Egs. (5) and (6) are applied to F cells and boundary conditions to S cells.
The slip conditions of walls are applied to W cells adjacent to F cells. No equations and
no conditions are applied to E cells because no fluid exists in them.

Finally, the procedure of computation is as follows:

0) At the n-th time step, markers are placed as they approximate the configuration of
the fluid region and the values of velocity are given to F cells.

1) The principal radii of curvature are calculated from the positions of markers belonging
to S cells and the value of pressure of S cells is calculated. The values of velocity are
extrapolated from those of nearby F cells.

2) Using Eq. (5), the values of pressure of F cells at the n-th time step are calculated by
an iterative method.
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3) Using Eq. (6), the values of velocity of F cells at the (n + 1)-st time step are calculated

by an iterative method.

4) Markers are moved with these velocities by a time interval Ar.

5) The configuration of the fluid region at the (» + 1)-st time step is determined by the

positions of markers and every cell is newly classified.

6) Return to step 1.

After the calculation of large time steps using the above procedure repeatedly, large
deformation, merging or splitting of the fluid region may occur and the distribution of
markers may become unbalanced. Then the configuration of the fluid region cannot be
clearly recognized. It is necessary to rearrange markers on the basis of the positions of
markers at the previous time step. For S cells, the markers are rearranged at every time
step and the number of markers in each S cell is always controlled. For F cells, the markers
are necessary only when the configuration of the fluid region at the next time step is cal-
culated and markers at the previous time step in F cells need not be memorized.

The method of calculation of curvature from the positions of markers in S cells is as
follows. In two-dimensional or axisymmetrical cases, the curvature is easily calculated
with the positions of three markers; one marker is selected from the S cell in question and
two markers are selected from adjacent S cells. In the three-dimensional case, the recogni-
tion of the curved free surface is very difficult and a large amount of computation may be
necessary. We avoid this problem using a statistical method; four markers in the S cell in
question and adjacent S cells determine a unique sphere that has those markers on its
surface. The average of a reciprocal of the radius of spheres determined from all combina-
tions of four markers is taken as an approximate value of the curvature. Such treatment
leads to shortened computational time.

IV. EXAMPLES OF CALCULATIONS

4.1 Splashing of a Droplet

This example shows an axisymmetrical splashing of a droplet running into a pool of the
same kind of fluid and a comparison with the experimental results of Macklin and Hobbs.®

A droplet 2.3 mm in diameter impacts a pool 4 mm deep at a velocity of 320 cm/s. When
a droplet strikes the liquid surface of the pool, the surface caves in from the impact. Sub-
sequently the fluid near the cave concentrates and a liquid projection springs up. This cal-
culation was performed by Amsden and Harlow# but they did not take account of the
surface tension effect.

Numerical results are shown in Fig. 2. In this figure, velocity vectors and pressure con-
tours are plotted on, respectively, the left- and right-hand side of the symmetry axis. Figure
3 shows the dependence of the maximum height of the liquid region on the symmetry axis
on time. The maximum projection height in the experiment is about 10 mm and the cal-
culated result is higher than the experimental one. It is suspected that this difference is
caused by the difference of the boundary condition of the pool. Conditions used in this
calculation are shown in Table 1.

4.2 Axisymmetrical Collision of Two Droplets
In this example, the collision of two droplets is examined by changing the diameters and
velocities of droplets. Two droplets moving with the same speed in opposite directions
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Fig. 2. Splashing of a droplet into a pool.

collide coaxially. The calculations are performed by using cylindrical coordinates and the
gravity effect is neglected. Figures 4, 5 and 6 show the numerical results for surface con-
figuration, velocity vector and pressure contours. In Fig. 4, diameters of the two droplets
are both 2.0 mm and initial velocities in the z-direction are + 50 cm/s, respectively. In
Fig. 5, diameters of the droplets are 3.0 mm and 1.5 mm and initial velocities are + 50
cm/s. In Fig. 6, diameters are 3.0 mm and 1.5 mm and initial velocities are + 100 cm/s.
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Fig. 3. Dependence of maximum height of liquid region on symmetry axis on time.

Table 1. Splashing of a droplet.

Fig. 2
Kinematic viscosity 0.01 cm?/s
Surface tension 75 dyn/cm
Diameter of droplet 0.23 cm
Velocity of droplet —320 cm/s
Gravity —1000 cm/s?
Depth of pool 0.4 cm
Diameter of pool 3.0cm
Mesh points 100 x 100
Mesh interval (4r) 0.015 cm
Mesh interval (4z) 0.01 cm
Time interval (dt) 4 x 1076

In the case of Fig. 4, two droplets merge into one body and expand in the r-direction
after the collision. Then the velocity component in the z-direction increases due to the
effect of surface tension, and thus the configuration of merged droplets which expanded
is restored.

Figure 5 shows that merged droplets first expand and then contract as in the former
case. In the case of higher velocities (Fig. 6), deformation in the r-direction is greater than
in Fig. 5, but the configuration is restored as above. Conditions used in these calculations
are shown in Table 2.

4.3 Collision of a Droplet with a Rigid Wall

This example shows a collision of a droplet with a rigid wall. Calculations were per-
formed for an axisymmetrical and a two-dimensional case. For the axisymmetrical case,
calculations are performed for two values of surface tension, 75 dyn/cm and 15 dyn/cm,
in the cylindrical coordinates and the numerical results are shown in Fig. 7 and Fig. 8,
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Fig. 4. Axisymmetrical collision of droplets.
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Fig. 5. Axisymmetrical collision of droplets. Fig. 6. Axisymmetrical collision of droplets.
Table 2. Axisymmetrical collision of two droplets.
Fig. 4 Fig. 5 Fig. 6
Kinematic viscosity 0.01 cm?/s 0.01 cm?/s 0.01 cm?/s
Surface tension 75 dyn/cm 75 dyn/cm 75 dyn/cm
Diameter of droplets 0.2 cm, 0.2 cm 0.3 cm, 0.15 cm 0.3 cm, 0.15 cm
Velocity of droplets +50 cm/s +50 cm/s +100 cm/s
Mesh points 130(z) x 80(r) 130(z) x 80(r) 130(z) x 80(r)
Mesh interval (4r) 0.005 cm 0.005 cm 0.005 cm
Mesh interval (4z) 0.005 cm 0.005 cm 0.005 cm
Time interval (dt) 1 x10°6s 1 x10°6s 5% 1077s
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Fig. 7. Axisymmetrical collision of a droplet
with a rigid wall.

Fig. 8. Axisymmetrical collision of a droplet

with a rigid wall.

Table 3. Axisymmetrical collision of a droplet with a rigid wall.

Fig. 7 Fig. 8
Kinematic viscosity 0.01 cm?/s 0.01 cm?/s
Surface tension 75 dyn/cm 15 dyn/cm
Diameter of droplet 0.22 cm 0.22 cm
Velocity of droplet —50 cm/s —50 cm/s
Mesh size 100 x 100 100 x 100
Mesh interval (4r) 0.005 cm 0.005 cm
Mesh interval (4z) 0.005 cm 0.005 cm
Time interval (4t) 1 x 10765 1 x 10765
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respectively. Gravity is neglected, the diameter of the droplet is 2.2 mm and initial velocity
is 50 cm/s in both figures. In the case of Fig. 7, the colliding droplet expands in the r-direc-
tion. Then the droplet forms a ring shape with a hole at the center due to the effect of surface
tension.

On the other hand, in the case of lower surface tension (Fig. 8), the colliding droplet

expands but the ring formation does not occur. Conditions used in these calculations are
shown in Table 3.

| )
4
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Fig. 9. Two-dimensional collision of a droplet with a rigid wall.
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Fig. 10. Two-dimensional collision of a droplet with a rigid wall.

Table 4. Two-dimensional collision of a droplet with a rigid wall.

13

Fig. 9 Fig. 10
Kinematic viscosity 0.01 cm?/s 0.01 cm?/s
Surface tension 75 dyn/cm 75 dyn/cm
Collision angle 90° 45°
Diameter of droplet 0.2 cm 0.2 cm
Velocity of droplet —50 cm/s(y) —35.4 cm/s(x, )
Mesh points 160(x) x 60(y) 160(x) x 60(y)
Mesh interval (4x) 0.005 cm 0.005 cm
Mesh interval (dy) 0.005 cm 0.005 cm

Time interval (4r) 1 x 10765 1 x 10765
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Fig. 11. Three-dimensional collision Fig. 12. Three-dimensional collision
of droplets. of droplets.

Table 5. Three-dimensional collision of two droplets.

Fig. 11 Fig. 12

Kinematic viscosity 0.01 cm?/s 0.01 cm?/s
Surface tension 75 dyn/cm 75 dyn/cm
Diameter of droplets 2cm, 2 cm 2 cm, 2 cm
Velocity of droplets + 500 cm/s +500 cm/s
Initial position of (2.5, 2.5, 1.25) (2.0, 2.5, 1.25)

centers of droplets (cm) (2.5, 2.5, 3.75) (3.0, 2.5, 3.75)
Mesh size 40(x) x 40(y) x 50(z) 40(x) x 40(y) x 50(z)
Mesh interval (4x) 0.125 cm 0.125 cm
Mesh interval (4y) 0.125 cm 0.125 cm
Mesh interval (4z) 0.1 cm 0.1 cm
Time interval (dt) 2 x 1075 2 x 1075 s

In the two-dimensional case, calculations are two-dimensional analyses of collisions with
various collision angles. Figures 9 and 10 show the computational results with collision
angles of 90° and 45°. Conditions in these calculations are shown in Table 4.
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4.4 Three-Dimensional Collision of Droplets

Figures 11 and 12 show how two identical fluid spheres collide and merge with each
other. All figures are drawn as a wire frame by removing hidden surfaces. Figure 11 shows
a head-on collision. After the collision, an asymmetrical frill appears and expands. It is
suspected that this expansion is unstable and numerical error causes this instability. In
the case of Fig. 12, the direction of the velocity vector is not parallel to the line which passes
through the centers of the spheres and merged spheres rotate around each other after col-
lision. The effect of surface tension rounds off the projecting parts of the fluid after the
collision. Conditions used in this calculation are shown in Table 5.

V. CONCLUSION

Improvement and extension of the MAC method was attempted and axisymmetrical,
two-dimensional and three-dimensional cases of fluid motions with free surfaces were
calculated numerically. In this type of calculation, saving memory and computational
time is an important problem. This problem is solved by putting markers only sparsely
in surface cells and rearranging them at each time step. In addition, a statistical method is
used in order to calculate the effect of surface tension in the three-dimensional case, saving
computational time and making even three-dimensional calculations easier. Numerical
results proposed in this paper are reasonable and they agree with actual observations.
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