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Abstract

Fuzzy cellular automaton (CA) is a dynamical system with a continuous state value embedding
a CA with a discrete state value. We investigate a fuzzy CA obtained from an elementary
CA of rule number 38. Its asymptotic solutions are classified into two types. One is a solution
where stable propagating waves exist, and the other is a static uniform solution of constant
value.
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1. Introduction
A cellular automaton (CA) is a dynamical system with

a finite set of state values in discrete coordinates. As a
consequence of their concise form and rich dynamics,
the theory and applications of CA have received a great
deal of interest [1]. One of the simplest configurations
is the elementary cellular automaton (ECA) of which
the binary state value at the next time is determined
from three neighbors in one-dimensional space sites at
the current time as follows:

un+1
j = f(unj−1, u

n
j , u

n
j+1), (1)

where j denotes an integer space site, n is an integer time
step, and u is a binary state value (u ∈ {0, 1}). Since f
is binary valued with three binary arguments, it can be
defined by the following rule table where bk ∈ {0, 1}.

x y z 111 110 101 100
f(x, y, z) b1 b2 b3 b4

011 010 001 000
b5 b6 b7 b8

(2)

Thus, there are 256 different rules defined by the
above table with each ECA being identified uniquely
by the rule number (b1b2 . . . b8)2. ECA has been math-
ematically analyzed from various viewpoints, including
investigations of the structure of the solutions, as well as
studies of the statistical properties of solution patterns.

The systems obtained by embedding CA in contin-
uous real or rational background is generally referred
to as “fuzzy” CA [2]. For example, fuzzy ECA is de-
fined in the form of (1) where j and n are integers
and u ∈ [0, 1]. There are infinite variations on f since
its necessary condition is [0, 1]3 → [0, 1] together with
{0, 1}3 → {0, 1}. This condition means fuzzification
together with embedding of the CA. One of the common

forms of fuzzy CA is defined by using the polynomial
[3, 4]. For example, if we define

f(x, y, z) = xyz, (3)

then (1) becomes a fuzzy ECA of rule number 128.
Since fuzzy CA is a continuous extension of CA, it

has been used as an application models to express an
intermediate state value among the original discrete val-
ues [5, 6]. Moreover, there exists another important sig-
nificance for fuzzy CA from the theoretical viewpoint.
Since it embeds CA in the continuous range, continuous
solutions to fuzzy CA propose a rich comprehension to
discrete ones to its original CA [7,8]. We discuss asymp-
totic solutions to a fuzzy CA obtained from an ECA in
this article. Its range is a continuous interval [0, 1], and
it also proposes solutions to the ECA as a special case
of a discrete range {0, 1}.

Let us consider the following equation:

un+1
j = f(unj−1, u

n
j , u

n
j+1),

f(x, y, z) = y + z − xy − 2yz + xyz (4)

= (1− x)y(1− z) + (1− y)z,

where j denotes an integer space site and n an integer
time step. Space is finite and the domain is 0 ≤ j < K
with a periodic boundary condition unj+K = unj . We can
easily show that the value of solutions to (4) can be
closed in u ∈ {0, 1}, (0, 1), or [0, 1]. If u ∈ {0, 1}, then
(4) is equivalent to the following rule table.

x y z 111 110 101 100
f(x, y, z) 0 0 1 0

011 010 001 000
0 1 1 0

(5)
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Fig. 1. Example of a solution to ECA38 for K = 30. The space

coordinates j and n are rightward and downward, respectively.

ECA: elementary cellular automaton.

Fig. 2. Example of a solution to fuzzy ECA defined by (4). State

values are shown in the grayscale from white (0) to black (1).

ECA: elementary cellular automaton.

It is the evolution rule of ECA of rule number 38, and
an example of time evolution is shown in Fig. 1.

We can consider (4) as a fuzzy CA obtained by ex-
tending as the state value of ECA38 to be continuous in
the range [0, 1]. An example of the evolution from ran-
dom initial data in [0, 1] is shown in Fig. 2. This figure
suggests that the random initial data converge to a uni-
form state for n → ∞. If we denote a uniform solution
as unj = vn, then vn satisfies the following mapping:

vn+1 = f(vn, vn, vn) = vn(1− vn)(2− vn). (6)

This mapping can be closed in [0, 1], and there is only

one stable fixed point ω = (3 −
√

5 )/2 satisfying ω =
f(ω, ω, ω), that is, ω2 − 3ω + 1 = 0 and 0 ≤ ω ≤ 1. Nu-
merical computations starting from random initial data
as shown in Fig. 2 imply that the asymptotic solution
converges to the uniform state as unj → ω. However, if
we restrict the initial data to be binary, that is, 0 or 1,
then the uniform state u ≡ ω cannot appear considering
the rule Table (5) and stable triangular waves with value
1 propagate in −j direction as shown in Fig. 1.

The asymptotic behaviors of both solutions differ sig-
nificantly. One is uniform and static and the other non-
uniform and moving stably. In this article, we discuss
and classify the asymptotic solutions to (4) closed in
[0, 1]. The remainder of this article is organized as fol-
lows. In Section 2, asymptotic solutions including at
least one 0 or 1 are discussed. We call this type of so-
lution “type A.” In Section 3, those solutions closed in
(0, 1) including neither 0 nor 1 are discussed. We call
this type of solution “type B.” In Section 4, we give
concluding remarks.

Other researchers have also considered convergence of
solutions to fuzzy CA. Betel and Flocchini proposed a
general theorem about fuzzy CA of which the evolution
rule is in a form of the weighted average of two sites [7].
They showed that various fuzzy CAs with 3 neighbors
give a uniform static solution asymptotically using their
theorem and a transformation of the map defined by
the evolution rule. Fukuda and Watanabe classified some
fuzzy CAs according to the types of asymptotic solutions
using the Gröbner basis [9]. Mingarelli studied a fuzzy
CA derived from ECA of rule number 110 and showed
that a solution from initial data with non-zero value on
one site in a zero background converges to a uniform
solution [10].

Note that the evolution rule defined by (4) can not be
treated by the theory proposed in [7]. Though the form is
similar to that of a weighted average, the minimum and
maximum values of sites are not monotonic and hence
the analysis is more challenging.

2. Asymptotic solutions including 0 or 1
In this section, we discuss asymptotic solutions of type

A, that is, those where there exists at least one site such
that u = 0 or 1 for n → ∞. Once 0 < unj < 1 holds
for any j at a certain n, the solution always satisfies
0 < u < 1 thereafter since (4) can be considered to
be an interpolation between y and 1 − y with weights
(1− x)(1− z) and z. Therefore, there exists at least one
site with value 0 or 1 at arbitrary n� 0 for asymptotic
solutions of type A; otherwise, solutions are of type B.
Note that a special case of the uniform solution u ≡ 0 is
also of type A, but we exclude this trivial case from the
discussion below.

Assume that the symbol ∗ denotes an arbitrary value
x satisfying 0 < x < 1. Then, the rule table for the
different combinations of values other than (5) is given
as follows:

11∗ 10∗ 01∗ 00∗ 1∗1 1∗0 0∗1 0∗0
0 ∗ ∗ ∗ ∗ 0 ∗ ∗

∗11 ∗10 ∗01 ∗00
0 ∗ 1 0

1∗∗ 0∗∗ ∗1∗ ∗0∗ ∗∗1 ∗∗0 ∗∗∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

(7)
Considering all local patterns ∗∗ with 0 or 1 attached to
its left, the pattern then evolves as

n : 0∗∗ 01∗∗ 11∗∗ ∗1∗∗
n+ 1 : ∗∗∗ ∗∗∗ 0∗∗ ∗∗∗∗
n+ 2 : ∗∗∗

(8)

We now consider the implications of these results. The
sequence of ∗ grows in the evolution if it includes ∗∗,
the asymptotic solution includes neither 0 nor 1 after
enough time steps, and 0 < u < 1 holds for any u at
n� 0. Since this type of asymptotic solution is of type
B, we will discuss it in the next section.

Thus, if ∗ is included in the solution of type A, it must
be isolated as 0∗0, 0∗1, 1∗0, or 1∗1. We now consider
the local sequence unj . . . u

n
j+4 for any combination of 0,
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Fig. 3. Example of time evolution that becomes an asymptotic

solution of type A.

1, and ∗, which determines the sequence un+1
j+1 u

n+1
j+2 u

n+1
j+3

and verifies which sequences can produce an isolated ∗.
Using the rule tables (5) and (7), we can show that only
the following four patterns are valid:

n : 001∗0 101∗0 ∗01∗0 11∗11
n+ 1 : 1∗0 1∗0 1∗0 0∗0

(9)
Therefore, if isolated ∗s exist in the asymptotic solution,
it must be 01∗0 moving to −j direction at speed 1. Note
that we used Mathematica to derive (9) since the number
of cases is large.

We now discuss about the sequence of 1s. Analogous
to the above, considering the local sequence unj . . . u

n
j+6

of any combination of values of 0, 1, and ∗ and calcu-
lating un+2

j+2 u
n+2
j+3 u

n+2
j+4 , we can show that any combina-

tion at n cannot produce 111 at n + 2. Therefore, if a
sequence of 1s is included in the asymptotic solution, it
must be x11y or x1y where x and y are 0 or ∗. Moreover,
considering the isolated ∗ is 01∗0 as shown above, the se-
quence of 1s must be one of the forms 0110, 0100, 0101,
or 01∗0. Calculating possible local sequences unj . . . u

n
j+7

that produce un+2
j+2 u

n+2
j+3 u

n+2
j+4 u

n+2
j+5 = 0110, 0100, or 0101,

we obtain the following evolutions:

n : ....0110 ....0100
n+ 1 : ..0100 ..0110
n+ 2 : 0110 0100

(10)

Note that 0101 cannot be produced and the symbol “.”
denotes an appropriate value.

Summarizing the above results, about the asymptotic
solutions of type A, we have

• If ∗s exist, they are isolated and realized by the local
pattern 01∗0 moving in the −j direction at speed 1.
• If 1s exist other than 01∗0, they are given by 0110 or

0100. These two patterns appear alternately as time
proceeds and move in the −j direction at speed 1.
• Among local patterns 1∗, 11, and 10, one or more

0s exist.

An example of time evolution of type A is shown in
Fig. 3.

3. Asymptotic solutions with neither 0

nor 1
In this section, we discuss asymptotic solutions of type

B, that is, 0 < unj < 1 for any j for n → ∞. We can

prove that any unj converges to ω = (3−
√

5 )/2 and the
solution becomes uniform with a constant ω as follows.

Assume any pair of a and b satisfying,

0 < a ≤ ω, 1− a
2− a

≤ b ≤ 1− 2a

1− a
. (11)

We can derive (1 − a)/(2 − a) ≤ (1 − 2a)/(1 − a) if
0 < a ≤ ω, and a ≤ b. Moreover, the minimum and
maximum of f(x, y, z) in the range x, y, z ∈ [a, b] are

min
x,y,z∈[a,b]

f(x, y, z) = f(b, a, a) = a(1− a)(2− b),

max
x,y,z∈[a,b]

f(x, y, z) = f(a, a, b) = (1− a)(a+ b− ab).

(12)
Note that we can derive the above by comparing the
values of f(x, y, z) for x, y, z ∈ {a, b} since f(x, y, z) is
linear on x, y, and z respectively.

Next, let us consider the following sequences for an
and bn:

an+1 = f(bn, an, an), bn+1 = f(an, an, bn). (13)

If we assume

0 < an ≤ ω,
1− an
2− an

≤ bn ≤
1− 2an
1− an

, (14)

we can derive an ≤ an+1 and bn ≥ bn+1 since we have

an+1 − an = an(1− an)
(1− 2an

1− an
− bn

)
≥ 0,

bn+1 − bn = an(2− an)
(1− an

2− an
− bn

)
≤ 0.

(15)

Moreover, an+1 ≤ ω holds if (14) is assumed, since

an+1 − ω = an(1− an)(2− bn)− ω

≤ an(1− an)
(

2− 1− an
2− an

)
− ω (16)

=
(an − ω)(a2n − (4− ω)an + 2)

2− an
≤ 0.

About bn+1 = (1− an)(an + (1− an)bn), we obtain

1− an
2− an

≤ bn+1 ≤ (1− an)2, (17)

if (14) is assumed. The inequalities

1− an+1

2− an+1
≤ 1− an

2− an
, (1− an)2 ≤ 1− 2an+1

1− an+1
(18)

hold since we can derive

1− an
2− an

− 1− an+1

2− an+1
=

an(1− an)

(
1− 2an
1− an

− bn
)

(2− an)(2− an+1)
≥ 0

(19)
and

1− 2an+1

1− an+1
− (1− an)2

=
(1−an)(1+2an−a2n)bn−an(3−6an+2a2n)

1−an+1

≥ an(1− 3an + a2n)2

2− an
≥ 0.

(20)
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Thus, the same form of inequalities as in (14) holds for
an+1 and bn+1 as

0 < an+1 ≤ ω,
1− an+1

2− an+1
≤ bn+1 ≤

1− 2an+1

1− an+1
(21)

under the assumption (14).
Summarizing the above, we arrive at

Proposition 1 Consider the sequences on an and bn
(n ≥ 0):

an+1 = f(bn, an, an), bn+1 = f(an, an, bn) (22)

with initial terms a0 and b0 satisfying

0 < a0 < ω,
1− a0
2− a0

≤ b0 ≤
1− 2a0
1− a0

. (23)

Then, an and bn for any n satisfy the same form of in-
equalities as of a0 and b0. Moreover, an ≤ an+1 and
bn+1 ≤ bn hold and the interval [an, bn] is nested as
[an+1, bn+1] ⊆ [an, bn].

Since the sequence of intervals [an, bn] is nested, it
converges to [α,β] for n → ∞. Values α and β satisfy
α = f(β, α, α) and β = f(α, α, β). The solution of these
two equations is uniquely determined as α = β = ω in
the range 0 < α ≤ β < 1.

Finally, let us consider the asymptotic solution of type
B. Without loss of generality, we can assume that the
time step of the asymptotic solution is n = 0. The so-
lution satisfies 0 < u0j < 1 for any j. The size of space
sites is finite (0 ≤ j < K) and a periodic boundary con-
dition is imposed. Since the space is finite, there exist a
maximum M and minimum m for {unj }K−1j=0 . Then, we
can choose a0 satisfying 0 < a0 < min(m,ω). The upper
bound (1−2a0)/(1−a0) for b0 of Proposition 1 converges
to 1 as a0 → 0, while the lower bound (1− a0)/(2− a0)
converges to 1/2. Therefore, we can always choose a0 and
b0 satisfying the inequalities of Proposition 1 for any ini-
tial data. Since an+1 and bn+1 are the maximum and the
minimum of f(x, y, z) in the range of x, y, z ∈ [an, bn],
unj ∈ [an, bn] holds for any n from Proposition 1. Thus,
we obtain lim

n→∞
unj = ω for any j. This implies that the

asymptotic solution of type B is a uniform solution with
the value ω.

4. Concluding remarks
We have discussed the asymptotic solutions to (4).

The solutions are always classified into two types,

namely, type A and B. We have shown that the stable
propagating wave with local pattern 0110, 0100, or 01∗0
exists in type A. Binary solutions constructed only from
{0, 1} are classified into this type. On the other hand,
the asymptotic solution of type B is the unique uniform
solution u ≡ ω.

Although the asymptotic solutions are completely
classified, it is more difficult to solve the initial value
problem of (4). We leave it to future work. Moreover,
similar results to type B have been reported for other
fuzzy CAs [9, 10]. Analyzing these equations and clas-
sifying their solutions is another direction for future
research.

There are various forms of fuzzy CA produced from
their original CA. We have also studied another exam-
ple of fuzzy CA obtained by replacing the term xyz by
xy2z in (4) and confirmed through numerical calcula-
tions that the asymptotic solutions are classified into
two types similar to (4). It is also a future problem to
develop a general method to classify fuzzy CAs origi-
nating from the same CA according to their behavior of
solutions.
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