China-Japan Joint Workshop on Integrable Systems 2019

Date: August 18-23, 2019
Venue: Shonan Village Center

Executive Committee
China Side
Yong Chen (China East Normal University), Engui Fan (Fudan University), Xianguo Geng (Zhengzhou University), Jingsong He (Ningbo University), Xingbiao Hu (AMSS, Chinese Academy of Sciences), Qingping Liu (China University of Mining), Senyue Lou (Ningbo University), Changzheng Qu (Ningbo University), Lixin Tian (Nanjing Normal University), Zhenya Yan (AMSS, Chinese Academy of Sciences), Ruoxia Yao (Shannxi Normal University), Dajun Zhang (Shanghai University), Youjin Zhang (Tsinghua University), Ruguang Zhou (Jiangsu Normal University), Zuonong Zhu (Shanghai Jiaotong University), Dafeng Zuo (University of Science and Technology of China)

Japan Side
Shin Isojima (Hosei University), Kenji Kajiwara (Kyushu University), Saburo Kakei (Rikkyo University), Ken-ichi Maruno (Waseda University), Junta Matsukidaira (Ryukoku University), Atsushi Nagai (Tsuda College), Hidetomo Nagai (Tokai University), Yoshimasa Nakamura (Kyoto University), Yasuhiro Ohta (Kobe University), Daisuke Takahashi (Waseda University), Kouichi Toda (Toyama Prefectural University), Tetsuji Tokihiro (The University of Tokyo), Satoshi Tsujimoto (Kyoto University), Ralph Willox (The University of Tokyo), Tetsu Yajima (Utsunomiya University)

Local Organizing Committee
Daisuke Takahashi (Waseda University), Ken-ichi Maruno (Waseda University), Kouichi Toda (Toyama Prefectural University), Hidetomo Nagai (Tokai University), Linyu Peng (Waseda University), Kazushige Endo (Waseda University)

The workshop is supported by JST CREST.
Information

Conference room: Auditorium (Conference Floor)
Poster Session: Foyer (the space next to Auditorium)
Breakfast, Lunch, Dinner: Cafeteria Oak (1F)
Banquet (August 20): Foyer (the space next to Auditorium)

Breakfast: 7:30-9:00
Lunch: 11:30-13:30
Dinner: 18:00-19:30 (Last Order)

Wi-Fi connection is available. You can find the information of Wi-Fi connectipn in your room.

Poster Session: Please put your poster on poster board in August 19 and remove your poster in the morning of August 21.

All guest rooms, conference rooms and restaurantes at Shonan Village Center are non-smoking. There are smoking room in Conference Flloor and Pocket Lounge in 2F, 3F.

Shop (1F): 8:00-22:30
Smoking area: Pocket Lounge (2F, 3F)
Laundry Room 1F, 2F
Aqua Club (Pool): 7:00-22:00

There is Business Room in Conference Floor. There are PCs and a photocoier.

If you want to have discussion with participants at night, you can use Lounge LEAF in Lobby (after 5pm).

Convinience Store: There is a convinience store (Family Mart) near Shonan Village Center. The distance from Shonan Village Center is 700 meters (7 minutes walk).

Address: Shonan Village Center, 1560-39 Kamiyamaguchi, Hayama Miura-gun, Kanagawa 240-0198
TEL: +81-46-855-1800

Payment: Please pay accommodation fee at Front Desk during the workshop.
List of Participants

China Side

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiang-Ke Chang</td>
<td>Chinese Academy of Sciences</td>
</tr>
<tr>
<td>Kui Chen</td>
<td>Fudan University</td>
</tr>
<tr>
<td>Yong Chen</td>
<td>East China Normal University</td>
</tr>
<tr>
<td>En-Gui Fan</td>
<td>Fudan University</td>
</tr>
<tr>
<td>Xing-Biao Hu</td>
<td>Chinese Academy of Sciences</td>
</tr>
<tr>
<td>Man Jia</td>
<td>Ningbo University</td>
</tr>
<tr>
<td>Chun-Xia Li</td>
<td>Capital Normal University</td>
</tr>
<tr>
<td>Qing-Ping Liu</td>
<td>China University of Mining and Technology (Beijing)</td>
</tr>
<tr>
<td>Xiao-Chuan Liu</td>
<td>Xian JiaoTong University</td>
</tr>
<tr>
<td>Sen-Yue Lou</td>
<td>Ningbo University</td>
</tr>
<tr>
<td>Li-Yuan Ma</td>
<td>Zhejiang University of Technology</td>
</tr>
<tr>
<td>Shou-Feng Shen</td>
<td>Zhejiang University of Technology</td>
</tr>
<tr>
<td>Jian-Qing Sun</td>
<td>Ocean University of China</td>
</tr>
<tr>
<td>Xiao-Yan Tang</td>
<td>East China Normal University</td>
</tr>
<tr>
<td>Chao-Zhong Wu</td>
<td>Sun Yat-Sen University</td>
</tr>
<tr>
<td>Zhi-Wei Wu</td>
<td>Sun Yat-Sen University</td>
</tr>
<tr>
<td>Jian Xu</td>
<td>University of Shanghai for Science and Technology</td>
</tr>
<tr>
<td>Di Yang</td>
<td>University of Science and Technology of China</td>
</tr>
<tr>
<td>Ruo-Xia Yao</td>
<td>Shaan Xi Normal University</td>
</tr>
<tr>
<td>Guo-Fu Yu</td>
<td>Shanghai JiaoTong University</td>
</tr>
<tr>
<td>Cheng Zhang</td>
<td>Shanghai University</td>
</tr>
<tr>
<td>Da-Jun Zhang</td>
<td>Shanghai University</td>
</tr>
<tr>
<td>Hai-Qiong Zhao</td>
<td>Shanghai University of International Business and</td>
</tr>
<tr>
<td>Ru-Guang Zhou</td>
<td>Jiangsu Normal University</td>
</tr>
<tr>
<td>Zuo-Nong Zhu</td>
<td>Shanghai JiaoTong University</td>
</tr>
<tr>
<td>Da-Feng Zuo</td>
<td>University of Science and Technology of China</td>
</tr>
<tr>
<td>Name</td>
<td>University</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Kanae Akaiwa</td>
<td>Kyoto Sangyo University</td>
</tr>
<tr>
<td>Kazushige Endo</td>
<td>Waseda University</td>
</tr>
<tr>
<td>Keisuke Hosaka</td>
<td>Waseda University</td>
</tr>
<tr>
<td>Shin Isojima</td>
<td>Hosei University</td>
</tr>
<tr>
<td>Saburo Kakei</td>
<td>Rikkyo University</td>
</tr>
<tr>
<td>Shuhei Kamioka</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>Katsuki Kobayashi</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>Takeo Kojima</td>
<td>Yamagata University</td>
</tr>
<tr>
<td>Yu Luo</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>Kazuki Maeda</td>
<td>University of Fukuchiyama</td>
</tr>
<tr>
<td>Kenichi Maruno</td>
<td>Waseda University</td>
</tr>
<tr>
<td>Keisuke Matsuya</td>
<td>Musashino University</td>
</tr>
<tr>
<td>Hiroshi Miki</td>
<td>Meteorological College</td>
</tr>
<tr>
<td>Atsushi Nagai</td>
<td>Tsuda University</td>
</tr>
<tr>
<td>Hidetomo Nagai</td>
<td>Tokai University</td>
</tr>
<tr>
<td>Hajime Nagoya</td>
<td>Kanazawa University</td>
</tr>
<tr>
<td>Nobutaka Nakazono</td>
<td>Tokyo University of Agriculture and Technology</td>
</tr>
<tr>
<td>Yuki Nishida</td>
<td>Doshisha University</td>
</tr>
<tr>
<td>Yasuhiro Ohta</td>
<td>Kobe University</td>
</tr>
<tr>
<td>Ryotaro Oshima</td>
<td>Waseda University</td>
</tr>
<tr>
<td>Linyu Peng</td>
<td>Waseda University</td>
</tr>
<tr>
<td>Takao Suzuki</td>
<td>Kindai University</td>
</tr>
<tr>
<td>Daisuke Takahashi</td>
<td>Waseda University</td>
</tr>
<tr>
<td>Kanesaki Takasaki</td>
<td>Kindai University</td>
</tr>
<tr>
<td>Yuta Tanaka</td>
<td>Waseda University</td>
</tr>
<tr>
<td>Kouichi Toda</td>
<td>Toyama Prefectual University</td>
</tr>
<tr>
<td>Satoshi Tsujimoto</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>Yoshihide Watanabe</td>
<td>Doshisha University</td>
</tr>
<tr>
<td>Ralph Willox</td>
<td>the University of Tokyo</td>
</tr>
<tr>
<td>Juntaro Yamamoto</td>
<td>Waseda University</td>
</tr>
<tr>
<td>Hideshi Yamane</td>
<td>Kuwansei Gakuin University</td>
</tr>
<tr>
<td>Haoyu Yang</td>
<td>Waseda University</td>
</tr>
</tbody>
</table>
China-Japan Joint Workshop on Integrable Systems 2019

Date: August 18-23, 2019
Venue: Auditorium, Shonan Village Center, Hayama, Miura-gun, Kanagawa, Japan

August 18
Arrival & Registration (15:00-18:00)
18:00-20:00 Dinner (Cafeteria OAK)
20:00-23:00 Free Discussion

August 19
7:30-9:00 Breakfast (Cafeteria OAK)
9:00-10:40 Free Discussion & Registration
10:40-10:55 Opening, Daisuke Takahashi (Waseda University)
10:55-11:20 Sen-Yue Lou (Ningbo University)
Multi-place systems and multi-place physics
11:20-11:45 Satoshi Tsujimoto (Kyoto University)
On classical orthogonal polynomials from Jacobi to -1 polynomials
11:45-12:10 Ruoxia Yao (ShaanXi Normal University)
On a nonlocal Alice-Bob system of nonlinear Schrödinger equation: Bilinear Bäcklund transformation, Darboux transformation and soliton solutions
Lunch (Cafeteria OAK)
13:40-14:05 Yu Luo (Kyoto University)
Exceptional $q = -1$ polynomials
14:05-14:30 Xiangke Chang (Chinese Academy of Sciences)
Isospectral flows related to Frobenius-Stickelberger-Thiele polynomials
14:30-14:55 Hiroshi Miki (Meteorological College)
Quantum walks on graphs associated with bivariate Krawtchouk polynomials
14:55-15:20 Yong Chen (East China Normal University)
Constructing two-dimensional optimal system of the group invariant solutions
Coffee Break
15:40-16:05 Jianqing Sun (Ocean University of China)
A numerical study of the 3-periodic wave solutions to KdV-type equations
16:05-16:30 Shin Isojima (Hosei University)
Ultradiscretization with parity variables of the hard-spring equation and its conserved quantity
16:30-16:55 Ruguang Zhou (Jiangsu Normal University)
Permutation matrices and multi-component coupled integrable lattice systems
16:55-17:20 Hidetomo Nagai (Tokai University)
Discrete and ultradiscrete mixed soliton solutions
17:20-17:45 Zuonong Zhu (Shanghai Jiao Tong University)
On A Reverse Space-Time Nonlocal Sasa-Satsuma Equation
18:00-19:30 Dinner (Cafeteria OAK)
19:30-23:00 Free Discussion
August 20
7:30-9:00 Breakfast (Cafeteria OAK)
9:10-10:20 Short Communication (10 min.)
 Keisuke Hosaka, Yu Luo, Liyuan Ma
 Ryotaro Oshima, Yuta Tanaka, Haoyu Yang
 Coffee Break
10:40-11:05 Kanehisa Takasaki (Kindai University)
 Volterra-type hierarchies for specialized hypergeometric tau functions
11:05-11:30 Dafeng Zuo (University of Science and Technology of China)
 Extended affine Weyl groups of BCD-type: their Frobenius manifolds and
 Landau–Ginzburg superpotentials
11:30-11:55 Hajime Nagoya (Kanazawa University)
 Determinant formulas for tau functions of q-Painlevé systems in terms of
 q-Nekrasov partition functions
 Lunch (Cafeteria OAK)
13:30-13:55 Dajun Zhang (Shanghai University)
 On multidimensional consistency
13:55-14:20 Nobutaka Nakazono (Tokyo University of Agriculture and Technology)
 Consistency around a cuboctahedron
14:20-14:45 Chun-Xia Li (Capital Normal University)
 Gauge transformations for the twisted derivation and quasideterminant
 solutions to the super KdV equation
14:45-15:10 Takeo Kojima (Yamagata University)
 Wakimoto realization of the quantum affine superalgebra $U_q(\widehat{sl}(M\mid N))$
 Coffee Break
15:20-17:00 Poster Session
 Kui Chen, Engui Fan, Keisuke Hosaka, Xing-Biao Hu, Liyuan Ma
 Ryotaro Oshima, Shou-Feng Shen, Yuta Tanaka, Xiaoyan Tang, Haoyu Yang
18:30-20:30 Banquet (Foyer, next to Auditorium)
20:00-23:00 Free Discussion
August 21

7:30-9:00 Breakfast (Cafeteria OAK)

9:10-9:35 Linyu Peng (Waseda University)
 A general prolongation formulation for symmetries of differential-difference equations

9:35-10:00 Xiao-Chuan Liu (Xian Jiao Tong University)
 Orbital stability of peaked solitary waves with arbitrary order of nonlinearities

 Coffee Break

10:20-10:45 Atsushi Nagai (Tsuda University)
 The best constant of discrete Sobolev inequalities

10:45-11:10 Jian Xu (University of Shanghai for Science and Technology)
 Riemann-Hilbert approach for the integrable modified Camassa-Holm equation
 with cubic nonlinearity

11:10-11:35 Saburo Kakei (Rikkyo University)
 Algebra-geometric solutions of lattice soliton equations arising from Toda lattice hierarchy

11:35-12:00 Zhiwei Wu (SunYat-Sen University)
 Darboux transforms for KdV-type hierarchies associated to affine Kac-Moody algebra
 of B-type

 Lunch (Cafeteria OAK)

13:30-13:55 Takao Suzuki (Kindai University)
 Cluster algebra and q-Painlevé equations

13:55-14:20 Guo-Fu Yu (Shanghai Jiao Tong University)
 Invariant subspaces of biconfluent Heun operators and special solutions of Painlevé IV

14:20-14:45 Kanae Akaiwa (Kyoto Sangyo University)
 Construction of Laurent-Jacobi matrices with prescribed eigenvalues via orthogonal polynomials

14:45-15:10 Chaohong Wu (SunYat-Sen University)
 Virasoro symmetries for Drinfeld-Sokolov hierarchies and equations of Painlevé type

15:10-15:35 Shuhei Kamioka (Kyoto University)
 The discrete Toda equation proves the Aztec diamond theorem

 Coffee Break

15:55-16:20 Yuki Nishida (Doshisha University)
 A fuzzification scheme for three states cellular automata

16:20-16:45 Di Yang (University of Science and Technology of China)
 On quasi-triviality of a class of PDEs

16:45-17:10 Kazuki Maeda (The University of Fukuchiyama)
 Generalized box–ball systems and nonautonomous discrete Toda lattices

18:00-19:30 Dinner (Cafeteria OAK)

19:30-23:00 Free Discussion
August 22
7:30-9:00 Breakfast (Cafeteria OAK)
9:00-9:25 Kazushige Endo (Waseda University)
Common property of asymptotic behavior of some probabilistic cellular automata
9:25-9:50 Cheng Zhang (Shanghai University)
Integrable mappings arising from open boundary reductions
Coffee Break
10:10-10:35 Keisuke Matsuya (Musashino University)
Spatial pattern of ultradiscretizable discrete Gray-Scott model
and Turing instabilities of its equilibrium solutions
10:35-11:00 Qingping Liu (China University of Mining and Technology)
Multi-soliton solutions of the two-component Camassa-Holm system:
Darboux transformation approach
11:00-11:25 Ralph Willox (the University of Tokyo)
On the direct and inverse scattering problems for udKdV
11:25-11:35 Closing
Lunch (Cafeteria OAK)
13:00-17:30 Free Discussion
17:30-20:00 Dinner (Minemoto Honten in Kamakura)
20:00-23:00 Free Discussion
August 23
Free Discussion
10:00 Departure

Poster Session (in August 20):
Kui Chen (Fudan Univ.): Bilinear equations and solutions of k-constrained DΔKP
Engui Fan (Fudan Univ.): Riemann-Hilbert Approach to Orthogonal Polynomials and Random Matrices
Keisuke Hosaka (Waseda Univ.): Initial value problem of max equation with an external variable and of a system
of max-equations
Xing-Biao Hu (Chinese Acad. of Sci.): Convergence acceleration algorithms and discrete integrable systems
Liyuan Ma (Zhejiang Univ. of Technol.): Abundant exact solutions to the discrete complex mKdV equation by
Darboux transformation
Ryotaro Oshima (Waseda Univ.): C program to solve the initial value problem of max-min equations
Shou-Feng Shen (Zhejiang Univ. of Technol.): Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling
Yuta Tanaka (Waseda Univ.): Soliton solutions of the DKP equation and networks
Xiaoyan Tang (East China Normal Univ.): A general nonlocal nonlinear Schrödinger equation with shifted parity,
charge-conjugate and delayed time reversal
Haoyu Yang (Waseda Univ.): Construction of exact soliton solutions in the spinor \(F = 1 \) Bose-Einstein condensates
by Hirota bilinear method

Local Organizing Committee:
Daisuke Takahashi (Waseda Univ.), Ken-ichi Maruno (Waseda Univ.), Kouichi Toda (Toyama Prefectural
Univ.), Hidetomo Nagai (Tokai Univ.), Linyu Peng (Waseda Univ.), Kazushige Endo (Waseda Univ.)

This workshop was supported by JST CREST.
館内マップ

1F

ビジネスルーム Business Room
喫煙ルーム Smoking Room
ロッカールーム Locker Room
自動販売機 Refreshments
管理室 Security Office
給湯室 Pantry
Breakfast, Lunch, Dinner

Cafeteria OAK

營業時間
予約にて承ります（三日前まで）
昼食／7:30 - 9:00
昼食／11:30 - 13:30
夕食／18:00 - 19:30（L.O.）

朝食 / Breakfast
Buffet style with Japanese and Western breakfast

昼食 / Lunch
Self service with two to three choices every day

夕食 / Dinner
Cafeteria style with main dish and a variety of side dishes

Banquet (August 20)
Isospectral flows related to Frobenius-Stickelberger-Thiele polynomials

Xiangke Chang
LSEC, ICMSEC, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, PR China
Email: changxk@lsec.cc.ac.cn

Motivated by an explicit formula studied in the modified Camassa-Holm (mCH) peakon lattice [2], we define a family of polynomials called the Frobenius-Stickelberger-Thiele (FST) polynomials previously introduced in [3]. For a specific choice of the deformation of the spectral measure, one is led to an integrable lattice (FST lattice), which is indeed an isospectral flow connected with a generalized eigenvalue problem. The spectral problem used previously in the study of the mCH peakon lattice is interpreted in terms of the FST polynomials together with the associated FST polynomials, resulting in a map from the mCH peakon lattice to a negative flow of the finite FST lattice. Furthermore, it is pointed out that the degenerate case of the finite FST lattice unexpectedly maps to the interlacing peakon ODE system associated with the two-component mCH equation studied in [1]. This talk is based on a joint work with Xingbiao Hu, Jacek Szmigielski and Alexei Zhedanov.

References

Bilinear equations and solutions of k-constrained DΔKP

Kui Chen
School of Mathematical Sciences, Fudan University
220 Handan, Yangpu, Shanghai 200433 China
Email: chenkui@fudan.edu.cn

The k-constrained DΔKP is investigated from views of the spectral problem, bilinear equations and solutions. These bilinear equations can be reduced to those of the k-constrained KP, on the reverse direction the solution of the k-constrained KP can be used to constructed the one of the k-constrained DΔKP. As example, the double Wronskian solution of the semi-discrete AKNS hierarchy is derived from the one of the AKNS hierarchy.
Constructing two-dimensional optimal system of the group invariant solutions

Yong Chen
East China Normal University, P. R. China
Email: mailto:ychen@sei.ecnu.edu.cn

To search for inequivalent group invariant solutions of two-dimensional optimal system, a direct and systematic approach is established, which is based on commutator relations, adjoint matrix, and the invariants. The details of computing all the invariants for two-dimensional algebra are presented, which is shown more complex than that of one-dimensional algebra. The optimality of two-dimensional optimal systems is shown clearly for each step of the algorithm, with no further proof. To leave the algorithm clear, each stage is illustrated with a couple of examples: the heat equation and the Novikov equation. Finally, two-dimensional optimal system of the (2+1) dimensional Navier-Stokes (NS) equation is found and used to generate intrinsically different reduced ordinary differential equations. Some interesting explicit solutions of the NS equation are provided.
Riemann-Hilbert Approach to Orthogonal Polynomials and Random Matrices

Engui Fan
School of Mathematical Sciences, Fudan University
Handan Road 220, Shanghai, 200433, PR China
Email: faneg@fudan.edu.cn

In this talk, we first show the connections among the Riemann-Hilbert problem, orthogonal polynomials and random matrices. Then we show how to use Riemann-hilbert approach to analyze asymptotic of orthogonal polynomials and random matrices.

References

Convergence acceleration algorithms and discrete integrable systems

Xing-Biao Hu
LSEC,ICMSEC
Academy of Mathematics and Systems Sciences, CAS
Beijing 100190
China
Email: hxb@lsec.cc.ac.cn

The links between convergence acceleration algorithms and discrete integrable systems are presented. Some old and new results in this direction are reported.
Gauge transformations for the twisted derivation and quasideterminant solutions to the super KdV equation

Chun-Xia Li (A joint work with Jon Nimmo)
School of Mathematical Sciences Capital Normal University
105, West Third Ring North Rd, Haidian District, Beijing 100048 China
Email: trisha_li2001@163.com

In this talk, I will first propose the concept of the twisted derivation and then present its gauge transformation which is expressed in terms of quasideterminants in general. We remark that the twisted derivation includes the normal derivative, the difference operator, the q-difference operator and super derivative as its special cases. Based on the gauge transformation, we are able to construct Darboux transformation and binary Darboux transformation for the super KdV equation, which can be regarded as a kind of noncommutative integrable systems due to the existence of fermion variables. By iteration, we finally arrive at quasideterminant solutions to the super KdV equation, which can be reduced to its existing superdeterminant solutions. We would like to mention that the above procedure could be used to derive quasideterminant solutions to the noncommutative KP equation, the (2 + 1)-dimensional non-Abelian Toda lattice equation, the non-Abelian Hirota-Miwa equation and the noncommutative (2 + 1)-dimensional q-discrete Toda lattice equation as well. This result reveals the great advantage of applying quasideterminants to deal with noncommutative integrable systems in a unified way.

References

Multi-soliton solutions of the two-component Camassa-Holm system: Darboux transformation approach

Q. P. Liu
Department of Applied Mathematics,
China University of Mining and Technology,
Beijing 100083, P. R. China.
Email: qpl@cumtb.edu.cn

We present one more approach to construct multi-soliton solutions of an integrable two-component Camassa-Holm (CH2) system. With help of a reciprocal transformation and a gauge transformation, we relate the CH2 system to the negative flow of the Broer-Kaup or two-boson hierarchy. The solutions of this negative flow are given in terms of Wronskians via Darboux transformation. Then the multi-soliton solutions of the CH2 system are recovered in parametric form by inverting the reciprocal transformation and the gauge transformation. This is a joint work with Gaihua Wang and Nianhua Li.
The stability of solitary waves (or solitons) is one of the fundamental qualitative properties of the solutions of nonlinear waves equations. In this talk, I will give a review of what have been obtained about the orbital stability of the peaked solitary waves (or peakons), present some recent results for the higher-order Camassa-Holm-type dispersive equations and investigate the effect of higher-order nonlinearity on the structure of stability.
Multi-place systems and multi-place physics

S. Y. Lou
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
Email: lousenyue@nbu.edu.cn

In this report, some new physics and new mathematics are summarised for nonlocal multi-place systems. Multi-place nonlocal systems can be systematically derived from multi-component local equations via discrete symmetry groups constructed by parity, time reversal, exchanges and charge conjugate[1]. Two and four place nonlocal NLS, KP and Boussinesq systems are especially discussed. Multiple soliton solutions of two and four place nonlocal systems are explicitly obtained via symmetry-antisymmetry separation method related to the discrete symmetry operators. From exact soliton solutions, one can find that the multi-place nonlocal systems are related to the multi-place correlations, entanglements, interactions[2] and the nonlinear excitations with special discrete symmetries of the initial or boundary conditions. Nonlocality may lead to some classical prohibitions [3], transitions [4] structure modifications of the basic nonlinear excitations.

References

Abundant exact solutions to the discrete complex mKdV equation by Darboux transformation

Ma LiYuan
Department of Applied Mathematics,
Zhejiang University of Technology, Hangzhou 310023, PR China
Email: mly2016@zjut.edu.cn

Abstract:
An N-fold Darboux transformation is constructed for the discrete complex modified Korteweg-de Vries equation in term of determinants. Through the obtained one-fold and two-fold Darboux transformation, a variety of new exact solutions, including an anti-dark soliton solution, a breather solution, a periodic solution, and a two-soliton solution, are derived from a nonzero constant and plane-wave seed solution. Via numerical simulation, a new kind of dynamical behavior of the two-soliton solution is exhibited, which tells that the two-soliton solution includes an anti-dark solitary wave and a W-shaped solitary wave.

References
Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling
Shou-Feng Shen
Department of Applied Mathematics, Zhejiang University of Technology
Hangzhou 310023, China
Email: mathssf@zjut.edu.cn

Integrable couplings are associated with non-semisimple Lie algebras. We propose a new method to generate new integrable systems through making perturbation in matrix spectral problems for integrable couplings, which is called the ‘completion process of integrable couplings’. As an example, the idea of construction is applied to the Ablowitz-Kaup-Newell-Segur integrable coupling. Each equation in the resulting hierarchy has a bi-Hamiltonian structure furnished by the component-trace identity [1].

References
A numerical study of the 3-periodic wave solutions to KdV-type equations

Jianqing Sun
School of Mathematical Sciences, Ocean University of China
Email: sunjianqing@ouc.edu.cn

In this talk, by using the direct method of calculating periodic wave solutions proposed by Akira Nakamura, we present a numerical process to calculate the 3-periodic wave solutions to several KdV-type equations: the Korteweg-de Vries equation, the Sawada-Koterra equation, the Boussinesq equation, the Ito equation, the Hietarinta equation and the (2+1)-dimensional Kadomtsev-Petviashvili equation. Some detailed numerical examples are given to show the existence of the three-periodic wave solutions numerically.
A general nonlocal nonlinear Schrödinger equation with shifted parity, charge-conjugate and delayed time reversal

Xiaoyan Tang
School of Mathematical Sciences, Shanghai Key Laboratory of PMMP,
East China Normal University, Shanghai 200062 China
Email: xytang@sist.ecnu.edu.cn

A general nonlocal nonlinear Schrödinger equation with shifted parity, charge-conjugate and delayed time reversal is derived from the nonlinear inviscid dissipative and equivalent barotropic vorticity equation in a β-plane. The modulational instability (MI) of the obtained system is studied, which reveals a number of possibilities for the MI regions due to the generalized dispersion relation that relates the frequency and wavenumber of the modulating perturbations. Exact periodic solutions in terms of Jacobi elliptic functions are obtained, which, in the limit of the modulus approaches unity, reduce to soliton, kink solutions and their linear superpositions. Representative profiles of different nonlinear wave excitations are displayed graphically. These solutions can be used to model different blocking events in climate disasters. As an illustration, a special approximate solution is given to describe a kind of two correlated dipole blocking events. The work has been published in Ref. [1].

References
Virasoro symmetries for Drinfeld-Sokolov hierarchies and equations of Painlevé type

Chaozhong Wu
School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P.R. China
Email: wuchaozhong@mail.sysu.edu.cn

We derive a series of Virasoro symmetries for the (generalized) Drinfeld-Sokolov hierarchy associated to an arbitrary affine Kac-Moody algebra with two certain gradations. By imposing the Virasoro constraints to the hierarchy, we obtain its solutions of Witten-Kontsevich and of Brezin-Gross-Witten types, and solutions characterized by certain ordinary differential equations of Painlevé type. We also show the existence of affine Weyl group actions on solutions of such Painlevé type equations, which agrees with the theory of Noumi and Yamada on affine Weyl group symmetries of the Painlevé type equations. This is a collaboration with Si-Qi Liu and Youjin Zhang.
Darboux transforms for KdV-type hierarchies associated to affine Kac-Moody algebra of B-type

Zhiwei Wu
School of Mathematics (Zhuhai), Sun Yat-sen University
Zhuhai, Guangdong, 519000, China
Email: wuzhiwei3@mail.sysu.edu.cn

Drinfeld-Sokolov in [1] associated to each affine Kac-Moody algebra G a G-hierarchy of soliton equations and constructed a G-KdV hierarchy on a cross section of certain gauge action by pushing down the G-hierarchy along the gauge orbits to the cross section. For example, the $B_{1}^{[1]}$-KdV hierarchy is the standard KdV hierarchy with the KdV

$$q_t = q_{xxx} - 3q q_x$$

In this talk, we will discuss KdV-type flows associated to affine Kac-Moody algebra of B-type and using loop group factorization in [2] to construct Darboux transforms for these flows.

References

Riemann-Hilbert approach for the integrable modified Camassa-Holm equation with cubic nonlinearity

Jian Xu
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, People’s Republic of China
Email: jianxu@usst.edu.cn

We investigate the initial value problem for the modified Camassa-Holm (m-CH) equation with cubic nonlinearity. The mCH equation is known to be integrable, which we mean it admits an Lax pair. We formulate the initial value problem as an associate vector Riemann-Hilbert problem, which allows us to give a parametric representation of the solution to the initial value problem in terms of the solution of the Riemann-Hilbert problem.

References
On quasi-triviality of a class of PDEs

Di Yang
School of Mathematical Sciences,
University of Science and Technology of China, Hefei 230026, P.R. China
Email: diyang@ustc.edu.cn

Explicit expression for quasi-triviality of scalar non-linear PDE is under consideration.
On a nonlocal Alice-Bob system of nonlinear Schrödinger equation: Bilinear Bäcklund transformation, Darboux transformation and soliton solutions

Ruoxia Yao and Yali Shen
School of Computer Science, Shaanxi Normal University
Xi’an, China
Email: rxyao@snnu.edu.cn

Motivated by the increasing desire to understand many events in natural and social sciences that happened at different space-times and usually entangled or correlated closely and can be described by using Alice and Bob, Lou put forward several physical and mathematical meaningful new Alice-Bob systems quite recently. Here, a new such kind of nonlinear Schrödinger equation (AB-NLS) derived from the well-known AKNS system is investigated. We construct not only a bilinear Bäcklund transformation for the unreduced AB-NLS by the Hirota method, but also an n-fold Darboux transformation for the reduced AB-NLS. Armed with them we obtain different kinds of solutions for the new AB-NLS, which are quite different from that of the NLS equation.
Invariant subspaces of biconfluent Heun operators and special solutions of Painlevé IV

Guo-Fu Yu
School of Mathematical Sciences, Shanghai Jiao Tong University
Shanghai, China
Email: gfyu@sjtu.edu.cn

In this talk, we show that there is a full correspondence between the parameters space of the degenerate biconfluent Heun connection (BHC) and that of Painlevé IV that admits special solutions. The BHC degenerates when either the Stokes’ data for the irregular singularity at degenerates or the regular singular point at the origin becomes an apparent singularity. We show that if the BHC is written as isomonodromy family of biconfluent Heun equations (BHE), then the BHE degenerates precisely when it admits eigen-solutions of the biconfluent Heun operators, after choosing appropriate accessory parameter, of specially constructed invariant subspaces of finite dimensional solution spaces spanned by parabolic cylinder functions. We have found all eigen-solutions over this parameter space apart from three exceptional cases after choosing the right accessory parameters. These eigen-solutions are expressed as certain finite sum of parabolic cylinder functions. We extend the above sum to new convergent series expansion in terms of parabolic cylinder functions to the BHE. The infinite sum solutions of the BHE terminates precisely when the parameters of the BHE assumes the same values as those of the degenerate biconfluent Heun connection except at three instances after choosing the right accessory parameter [1].

References

Integrable mappings arising from open boundary reductions

Cheng Zhang
Department of Mathematics, Shanghai University
99 Shanghai Road, Shanghai 200444, Japan
Email: ch.zhang.maths@gmail.com

In the study of Cauchy problems for two-dimensional integrable quad-equations on \mathbb{Z}^2 lattices, integrable mappings can be obtained through the so-called periodic reductions. In this talk, based on a recent study of initial-boundary-value problems for integrable quad-equations by Caudrelier, Crampé & CZ (SIGMA 10(2014):014), another type of reductions, the open boundary reductions, is provided. Instead of imposing periodicity on the underlying lattice, initial-boundary-value problems are posed on a strip with two parallel boundaries. The integrability is relying on the so-called boundary consistency, which is the defining integrable criterion for quad-equations with boundary. Naturally, integrable initial-boundary problems give rise to classes of integrable mappings. This work is in collaboration with Peter van der Kamp and Vincent Caudrelier.
The property of multidimensional consistency plays an important role in the investigation of lattice equations. In this talk first I will briefly recall this property and some examples of multidimensionally consistent equations such as discrete Burgers, lattice potential KdV, Miwa’s equation, and so on. Then I will introduce some extensions based on multidimensionally consistent equations, such as two-component version and edge systems. (In collaboration with Peter van der Kamp and Danda Zhang.)
Permutation matrices and multi-component coupled integrable lattice systems

Ruguang Zhou
School of Mathematics and Statistics, Jiangsu Normal University,
Xuzhou, Jiangsu 221116, P. R. China
Email: zhouruguang@jsnu.edu.cn

In this talk we would like to introduce a method for generating vector-value integrable analogies of integrable lattice systems or integrable differential-difference equations. The basic ingredient of the method is to insert permutation matrices. We formulate the zero-curvature representations and Hamiltonian structures of the resulting vector lattice systems. We take Toda lattice as illustrative example.

References

On A Reverse Space-Time Nonlocal Sasa-Satsuma Equation

Zuonong Zhu
School of Mathematical Sciences, Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai 200240 China
Email: znzhu@sjtu.edu.cn

The Sasa-Satsuma equation is an integrable high-order nonlinear Schrödinger equation, and also can be viewed as a complex modified KdV-type equation. It can describe the propagation of femtosecond pulses in optical fibers. In this talk, inspired by the work on nonlocal integrable systems of Ablowitz and Mussliman, we introduce a reverse space-time nonlocal Sasa-Satsuma equation, and derive its solutions with the Darboux transformation method. Periodic solutions, and some localized solutions, such as dark soliton, W-shaped soliton, M-shaped soliton and breather soliton of the reverse space-time nonlocal Sasa-Satsuma equation are constructed. This is a joint work with C. Q. Song, and D. M. Xiao.

References
Extended affine Weyl groups of BCD-type: their Frobenius manifolds and Landau–Ginzburg superpotentials

Dafeng Zuo
School of Mathematics, University of Science and Technology of China, P.R.China
Email: dfzuo@ustc.edu.cn

This is a joint work with B.Dubrovin, Ian Strachan and Y.-J. Zhang [2]. For the root systems of type B_l, C_l and D_l, we generalize the result of [1] by showing the existence of Frobenius manifold structures on the orbit spaces of the extended affine Weyl groups that correspond to any vertex of the Dynkin diagram instead of a particular choice made in [1]. It also depends on certain additional data. We also construct Landau–Ginzburg superpotentials for these Frobenius manifold structures.

References
Construction of Laurent-Jacobi matrices with prescribed eigenvalues via orthogonal polynomials

Kanae Akaiwa
Faculty of Information Science and Engineering, Kyoto Sangyo University
Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 Japan
Email: akaiwa@cc.kyoto-su.ac.jp

Solving inverse eigenvalue problems (IEPs) is an important subject in numerical linear algebra. Chu and Golub gave a comprehensive review for IEPs [1]. The problem to construct a matrix having prescribed eigenvalues is one of IEPs and called the structured IEP. It is known that orthogonal polynomials are closely related to matrix eigenproblems. For example, in [2], Hendriksen and Nijhuis associated orthogonal Laurent polynomials with the pentadiagonal matrices called Laurent-Jacobi matrices.

In this talk, we present an algorithm to construct Laurent-Jacobi matrices with prescribed eigenvalues by making use of a relation between orthogonal Laurent polynomials and Laurent biorthogonal polynomials [3].

References
Common property of asymptotic behavior of some probabilistic cellular automata

Kazushige Endo
Department of Applied Mathematics, Faculty of Science and Engineering, Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan
Email: k-endo@aoni.waseda.jp

Probabilistic Burgers cellular automaton (PBCA) is equivalent to parallel updated totally asymmetric simple exclusion process (TASEP). In this presentation, utilizing transition matrices and primitive combinatorial methods, we propose some conjectures for asymptotic distribution of PBCA and derive fundamental diagram (FD) which shows relations between density and mean flow of particles by conjectures. In order to have the conjectures, we utilize a property that each element of an eigenvector for eigenvalue 1 of transition matrices of PBCA for some parameters can be factorized. Moreover, we propose some extended systems of PBCA which have the common property like PBCA.
Initial value problem of max equation with an external variable and of a system of max-equations

Keisuke Hosaka
Department of Pure Applied Mathematics, Graduate School of Fundamental Science and Engineering, Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan
Email: math_swim@akane.waseda.jp

We can propose the non-autonomous equation by introducing the external parameters into the autonomous equation. In this presentation, we will show some examples of non-autonomization of max equation preserving the polynomial order of complexity of solutions. There are some autonomous max equations with this order, but if we introduce the non-autonomous external parameter, the complexity of solution often grows and changes to exponential order. To preserve the polynomial order, we need to specify the form of max equation with an external parameter. Moreover, we will show some examples of system of max equations on two dependent variables with polynomial order of complexity. In this case, one variable can be considered to play a role of external term to the other.
Ultradiscretization with parity variables of the hard-spring equation and its conserved quantity

Shin Isojima
Faculty of Science and Engineering, Hosei University
3-7-2 Kajino-cho, Koganei-shi, Tokyo 184-8584 Japan
Email: isojima@hosei.ac.jp

Ultradiscretization, proposed by T. Tokihiro, D. Takahashi, J. Matsukidaira and J. Satsuma in 1996, is a limiting procedure transforming a given subtraction-free difference equation into the piecewise-linear equation, which can be regarded as a time evolution rule of a cellular automaton (CA). This procedure may enable us to export knowledge from the analysis of differential equations to CA and develop research on nonlinear science.

However, “subtraction-free” is a strict restriction in the traditional ultradiscretization. An approach to overcome this restriction is “ultradiscretization with parity variables” (p-ultradiscretization) [1]. In this procedure, we consider the sign of dependent variables in each time evolution step and obtain a set of conditional piecewise-linear equations. Do essential qualitative properties of the original equation survive through p-ultradiscretization?

A difference equation

\[\frac{x_{n+1} - 2x_n + x_{n-1}}{2\delta^2} + c_1 (x_{n+1} + x_{n-1}) + 2c_2x_n + c_3x_n^2(x_{n+1} + x_{n-1}) = 0 \]

(1)

is a discrete analogue of the hard-spring equation \(x''(t) + ax(t) + b(x(t))^3 = 0 \) and admits one conserved quantity [2]. This integrable discrete system may be a suitable target for studying fundamental property of p-ultradiscretization.

In this talk, we report our research [3] on p-ultradiscrete analogue of (1) and its conserved quantity. We study three objects:

(i) solutions of initial value problems for the ultradiscrete equation,

(ii) behaviour of p-ultradiscretized conserved quantity,

(iii) approximated solutions of (1) by the leading term.

In each object, the results are classified into some types. Moreover, within our experiments, we observe correspondence of these types among objects.

References

Algebro-geometric solutions of lattice soliton equations
arising from Toda lattice hierarchy

Saburo Kakei
Department of Mathematics, School of Science, Rikkyo University
3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501 Japan
Email: kakei@rikkyo.ac.jp

Lattice soliton equations, such as lattice potential KdV equation [1]
\[
(x_{m+1,n} - x_{m,n+1}) (x_{m,n} - x_{m+1,n+1}) = p^2 - q^2,
\]
lattice Schwarzian KdV equation [1]
\[
p^2 (x_{m,n} - x_{m+1,n}) (x_{m,n+1} - x_{m+1,n+1}) = q^2 (x_{m,n} - x_{m,n+1}) (x_{m+1,n} - x_{m+1,n+1}),
\]
lattice Boussinesq system [3]
\[
y_{m+1,n} = x_{m,n} x_{m+1,n} - z_{m,n}, \quad y_{m,n+1} = x_{m,n} x_{m+1,n+1} - z_{m,n},
\]
\[
z_{m+1,n+1} = x_{m,n} x_{m+1,n+1} - y_{m,n} + \frac{p - q}{x_{m+1,n} - x_{m,n+1}},
\]
lattice Schwarzian Boussinesq equation [2]
\[
(x_{m+2,n+2} - x_{m+1,n+2}) (x_{m,n+2} - x_{m+1,n+2}) (x_{m,n+1} - x_{m,n})
\times \left\{ q^3 (x_{m+2,n+1} - x_{m+2,n}) (x_{m+1,n+1} - x_{m+1,n}) - p^3 (x_{m+2,n+1} - x_{m+1,n+1}) (x_{m+2,n} - x_{m+1,n}) \right\}
\]
\[
= (x_{m+2,n+2} - x_{m+2,n+1}) (x_{m+2,n} - x_{m+1,n+1}) (x_{m+1,n} - x_{m,n})
\times \left\{ p^3 (x_{m,n+2} - x_{m,n+1}) (x_{m+1,n+1} - x_{m,n+1}) - q^3 (x_{m+1,n+2} - x_{m+1,n+1}) (x_{m,n+2} - x_{m,n+1}) \right\}
\]
are investigated from the viewpoint of Toda lattice hierarchy [4]. We will show that these equations can be obtained as reductions of the Toda lattice hierarchy, and discuss their solutions (soliton-type solutions, algebro-geometric solutions) in unified manner.

References
The discrete Toda equation proves the Aztec diamond theorem

Shuhei Kamioka
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 Japan
Email: kamioka.shuhei.3w@kyoto-u.ac.jp

Tilings of the Aztec diamonds are combinatorial objects which we can exactly enumerate; the number of (domino-)tilings of the Aztec diamond of order n is equal to $2^{\frac{n(n+1)}{2}}$. Many different proofs are given to this fact including combinatorial ones and algebraic ones. (See [1, 2] for example.) In this talk a new proof by using the discrete two-dimensional (2D) Toda equation will be shown. The proof is based on the observation that we can construct a generating (or partition) function for tilings of the Aztec diamonds and its product expression from any solution to the discrete 2D Toda equation.

References

Wakimoto realization of the quantum affine superalgebra $U_q(\widehat{sl}(M \mid N))$

Takeo Kojima
Department of Mathematics and Physics, Faculty of Engineering,
Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
Email: kojima@yz.yamagata-u.ac.jp

A bosonization of the quantum affine superalgebra $U_q(\widehat{sl}(M \mid N))$ is presented for an arbitrary level $k \in \mathbb{C}$. We call this bosonization Wakimoto realization [1]. This talk is based on [2].

References

Exceptional $q = -1$ polynomials

Yu Luo, Satoshi Tsujimoto
Department of Applied Mathematics and Physics, Graduate School of
Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 Japan
Email: luo.yu.68e@st.kyoto-u.ac.jp

Exceptional orthogonal polynomials are important extensions of the classical families including but not limited to the Hermite, Laguerre and Jacobi polynomials. An Bochner type theorem has been presented to address the fact that every system of exceptional orthogonal polynomials can be obtained from a classical orthogonal polynomial system through a sequence of Darboux transformations [1]. Note that in this context the classical orthogonal polynomials are limited to the Hermite, Laguerre and Jacobi polynomials, sometimes also be referred to as the “very” classical orthogonal polynomials. In general, polynomials in the Askey-Wilson scheme all can be called classical. The term classical means that apart from the three-term recurrence relations, these polynomials satisfy also an eigenvalue equation. Recently, several new families of polynomial systems which appear by taking a nontrivial limit $q = -1$ on orthogonal polynomials from the Askey-Wilson scheme have been identified classical. They satisfy eigenvalue problems with differential/difference operators of Dunkl type. Specifically, these polynomials are the Bannai-Ito polynomials, the big -1-Jacobi and the little -1-Jacobi polynomials [3, 4, 5]. Unlike the previous cases, the associated Dunkl-type operators are of first-order which cannot be factorized into two first-order as it was performed in an ordinary Darboux transformation. We apply a generalized Darboux transformation by making use of a pair of intertwining relations satisfied by the Dunkl-type operators. In this way we derive some exceptional extensions of these $q = -1$ polynomials [2]. An interesting fact of these exceptional orthogonal polynomial systems is that in several cases the corresponding degree sequences are consist of even numbers only, for example, $0, 2, 4, 4, \ldots$. We further study their ladder operators and the associated algebraic relations to address this fact.

References
Generalized box–ball systems and nonautonomous discrete Toda lattices

Kazuki Maeda
The University of Fukuchiyama,
3370 Hori, Fukuchiyama, Kyoto 620-0886, Japan
Email: kmaeda@kmaeda.net

We first give a connection between the generalized box–ball system proposed by Hatayama et al. [1] and the nonautonomous discrete hungry Toda lattice [2]. Studies on the connection also derived another deautonomization of the discrete hungry Toda lattice and a novel generalized box–ball system [3]. We discuss the novel generalized box–ball system, e.g., its KP type time evolution equation, particular solutions, and so on.

References

Spatial pattern of ultradiscretizable discrete Gray-Scott model and Turing instabilities of its equilibrium solutions

Keisuke Matsuya
Department of Mathematical Engineering, Faculty of Engineering, Musashino University
3-3-3 Ariake, Kotou-ku, Tokyo 135-8181 Japan
Email: keimatsu@musashino-u.ac.jp

Gray-Scott model:
\[
\begin{align*}
 \frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2} - uv^2 + a(1 - u), \\
 \frac{\partial v}{\partial t} &= D \frac{\partial^2 v}{\partial x^2} + uv^2 - bv,
\end{align*}
\]
where \(u := u(t, x), v := v(t, x), t \geq 0, x \in \Omega_c \subset \mathbb{R}, a, b, D > 0\), is a reaction-diffusion system and whose solutions give various spatial patterns[1, 3]. In this talk, we propose a discretization and an ultradiscretization of Gray-Scott model [2]. Ultradiscretization is a limiting procedure transforming a given difference equation into a cellular automaton. The ultradiscrete system is directly related to the elementary cellular automaton Rule 90 which gives a Sierpinski gasket pattern. We also discuss relation between spatial patterns of the discrete system and Turing instability.

References

Quantum walks on graphs associated with bivariate Krawtchouk polynomials

Hiroshi Miki
Meteorological College,
7-4-81 Asachi-Cho, Kashiwa-City, Chiba 277-0852 Japan
Email: hmiki@mc-jma.go.jp

Orthogonal polynomials play a central role in analysing 1-dimensional XX spin lattice model, which is equivalent to continuous time quantum walks. Especially, the model associated with Krawtchouk polynomials exhibits perfect state transfer and relates to quantum walks on hypercube.

In this talk, we shall focus on bivariate extension of Krawtchouk polynomials and consider quantum walks on the associated graphs. The corresponding 2-dimensional XX spin lattice model is shown to be derived from this quantum walk and its analysis is given by using the properties of these polynomials.

This talk is based on joint work with Satoshi Tsujimoto and Luc Vinet [1].

References
The best constant of discrete Sobolev inequalities

Atsushi Nagai
Department of Computer Science, College of Liberal Arts, Tsuda University
2-1-1 Tsuda-machi, Kodaira-shi, Tokyo 187-8577 Japan
Email: a.nagai@tsuda.ac.jp

The best constant of a certain class of Sobolev inequalities was found by Talenti [1] by through variational methods. In our works, we found the best constant of a different class of Sobolev inequalities through a different approach, which is based on the theory of Green function and reproducing kernel [2].

In this talk, starting from boundary value problems of difference equations, we derive discrete Sobolev inequalities and its best constant. In particular, discrete Sobolev inequalities on graphs, including periodic lattice and C60 buckeyball, are investigated in a detailed manner [3, 4].

References

Discrete and Ultradiscrete mixed Soliton Solutions
Hidetomo Nagai and Nobuhiko Shinzawa
Department of Mathematics, Tokai University,
4-1-1, Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan.
Department of Engineering, Nishinippon Institute of Technology,
1-11, Aratsu, Kandamachi, Miyako-gun, Fukuoka, 800-0344, Japan
Email: hdnagai@tokai-u.jp

We propose a new type of soliton equation. It is obtained from the generalized discrete BKP equation and admits different types of soliton solutions[1]. We also propose ultradiscrete analogues of them. The ultradiscrete equation also admits the mixed solution, which includes the original Box-Ball system in a special case.

References
Determinant formulas for tau functions of q-Painlevé systems in terms of q-Nekrasov partition functions

Hajime Nagoya
School of Mathematics and Physics, Kanazawa University
Kakuma, Kanazawa, Ishikawa 920-1192 Japan
Email: nagoya@se.kanazawa-u.ac.jp

In [1], the authors gave an explicit formula for general solutions to the q-difference Painlevé VI equation, in terms of q-Nekrasov partition functions. The basic idea is to construct fundamental solutions of the Lax pair for q-PVI by using the 5-point q-Nekrasov partition function of rank 2 with the degenerate condition.

Let us introduce the q-Nekrasov partition function. For partitions λ, μ, we set

$$N_{\lambda,\mu}(u) = \prod_{\square \in \lambda} \left(1 - q^{-\ell(\square)} - q^0 - u\right) \prod_{\square \in \mu} \left(1 - q^0 - \ell(\square) + 1 + u\right),$$

which we call a Nekrasov factor. The q-Nekrasov partition function of rank 2 reads as

$$Z(\theta_{m+1}, \sigma_{m-1}, \cdots, \theta_1, \theta_0; x_m, \cdots, x_1) = \sum_{\lambda^{(1)}, \mu^{(m-1)}} \prod_{p=1}^{m-1} x_{\lambda^{(p)}}^{N_{\lambda^{(p)}, \mu^{(p-1)}}(q^{\epsilon_{\lambda^{(p-1)}} - \theta_p - \epsilon_{\mu^{(p-1)}} - 1})} \prod_{p=1}^{m} \prod_{\epsilon, \epsilon' = \pm} N_{\lambda^{(p)}, \mu^{(p)}}(q^{\epsilon \sigma_p - \theta_{p-1}}).

We have set $\sigma_0 = \theta_0$, $\sigma_m = \theta_{m+1}$, $\lambda^{(0)} = \lambda^{(m)} = (\emptyset, \emptyset)$, and the sum is taken over all pair of partitions $\lambda^{(p)} = (\lambda_+^{(p)}, \lambda_-^{(p)})$, $p = 1, \ldots, m - 1$. If $m = 2$, $\theta_1 = 1/2$, and $\sigma_1 = \theta_0 \pm 1/2$, then the above function becomes the q-hypergeometric series $2q_1(x_1/x_2)$. We call the condition $\theta_i = 1/2$, and $\sigma_i = \sigma_{i-1} \pm 1/2$ the degenerate condition.

In my talk, I will discuss the rank N case. I explain how to construct a fundamental solution of a connection preserving deformation of rank N in terms of q-Nekrasov partition function of rank N. As a result, I derive determinant formulas for tau functions of q-Painlevé systems in terms of q-Nekrasov partition functions. When $N = 2$, they are bilinear equations for tau functions.

References
Consistency around a cuboctahedron

Nobutaka Nakazono

Institute of Engineering, Division of Mathematical Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
Email: nakazono@go.tuat.ac.jp

In the theory of discrete integrable systems, the classification of lattice equations using the consistency around a cube (CAC) property [1, 2, 4, 5, 6] are well known. The resulting equations are collectively called ABS equations.

In this talk, we show new classification of lattice equations using a consistency around a cuboctahedron (CACO) property. This work is based on the collaboration with Prof. Nalini Joshi (The University of Sydney) [7].

References

A fuzzification scheme for three states cellular automata

Yuki Nishida
Graduate School of Science and Engineering, Doshisha University
1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
Email: cyjc1901@mail4.doshisha.ac.jp

A cellular automaton (CA) is an array of cells that evolves through discrete time steps according to the local rule. A familiar one is an elementary cellular automaton (ECA), which is the one-dimensional CA with two states, say 0 and 1, and radius one. Among 256 rules, ECA Rule 184 is also known as the simplest modeling of traffic flow. To investigate the dynamics of ECA, Cattaneo et al. [1] proposed the continuous counterpart of ECA. Their approach is the “fuzzification” of the local rules expressed in the disjunctive normal form, and the yielding one is called fuzzy CA. Theoretical results on fuzzy CA, such as the conservation law, convergence and self-oscillation are given by Betel and Flocchini (e.g. [2, 3]). Since two states \{0, 1\} are extended to the interval \([0, 1]\), fuzzy CA is often visualized in gray-scaled space-time diagrams.

In this talk, we develop the fuzzification scheme for three states CA. Slow to Start Rule for traffic flow model [4] is an example of three states CA, where three states stand for ‘cars enabled to move’, ‘cars forced to stop’ and ‘absence of cars’. In our fuzzification process, we assume that three states are not a sequence of numbers, like 0, 1 and 2, but the vertices of a triangle. Then we get the fuzzy CA in which the states of cells are defined inside the triangle. Regarding the inner point of the triangle as the mixture of three states, we can visualize a fuzzy CA in RGB colors. Further, we present some properties of our fuzzy CA, such as the conservation law and the convergence.

References

C program to solve the initial value problem of max-min equations

Ryotaro Oshima
Department of Pure and Applied Mathematics, Graduate School of
Fundamental Science and Engineering, Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan
Email: ryo-tarou@toki.waseda.jp

Complexity of formal solutions to max-min evolitional equation grows exponentially as time develops. There are useful formulas on max (min) operations to reduce this complexity. If we define the class of equations by the minimum complexity obtained by the reduction, they can be classified into the polynomial or exponential order. In order to identify the class, we can make the computer program to arrange and reduce the expression of solutions. Symbolic manipulation software like Mathematica is useful and strong tool to realize this, but the calculation cost becomes often huge. Therefore, we develop the C program which can operate max-min symbolic manipulation using pointer and structure of C language. We will explain about the structure of our C program and results obtained by applying the concrete max-min equations.
A general prolongation formulation for symmetries of
differential-difference equations

Linyu Peng
Waseda Institute for Advanced Study, Waseda University
1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
Email: l.peng@aoni.waseda.jp

Symmetry methods have played fundamentally important roles in analysing the integrability and solvability of differential equations since S. Lie’s pioneering work in 1880s. During last decades, a lot of efforts were contributed to extend these methods to difference equations and differential-difference equations (DDEs), both of which not only come from discretisations of differential equations but also are dynamical models themselves.

Recently, people realised that symmetry techniques of DDEs, somehow ‘singular’ between continuous and fully discrete cases, do not simply mimic those of differential/difference equations; for instance, the authors tried to fix previous work via a semi-discrete continuum limit of the difference case in the paper [2] published in 2010. In this talk, I will introduce a rigorous analysis about symmetries of DDEs based on [3]; see also [4] for its comparison with previous literature, e.g., [1, 2]. Two main questions about symmetries of DDEs will be answered: 1) Why and how they are different from the differential and difference cases? 2) What is the symmetry prolongation formulation and how to calculate symmetries using the linearized symmetry condition?

References

The cluster algebra was introduced by Fomin and Zelevinsky. It is a variety of commutative ring described in terms of cluster variables and coefficients. Its generating set is defined by an operation called a mutation which transforms a seed consisting of cluster variables, coefficients and a quiver. Then new cluster variables (reps. coefficients) are rational in original cluster variables and coefficients (reps. coefficients). Hence we can obtain various discrete integrable systems from mutation-periodic quivers as relations satisfied by cluster variables and coefficients.

\[
\begin{array}{ccc}
\vdots & \vdots & \vdots \\
\cdots & [0,0] & [0,1] & [0,2] & \cdots \\
\cdots & [1,0] & [1,1] & [1,2] & \cdots \\
\cdots & [2,0] & [2,1] & [2,2] & \cdots \\
\vdots & \vdots & \vdots & & \\
\end{array}
\]

In this talk, we consider the above quiver. We always assume that
\[
[i,j] = [i + mn, j] = [i, j + m] \quad (m, n \in \mathbb{N}, m > 1, mn > 2).
\]

Hence the quiver can be regarded as the one on a torus. This quiver is invariant under some compositions of mutations and permutations of vertices of quivers. Those operations generate a group of birational transformations which is isomorphic to an extended affine Weyl group of type \((A_{mn-1} + A_{m-1} + A_{m-1})^\oplus\). And translations of this group provides higher order generalizations of the \(q\)-Painlevé equations. In this talk we explain its detail. If time permits, we discuss \(q\)-hypergeometric solutions and degeneration structures of the \(q\)-Painlevé systems.

References

Volterra-type hierarchies for specialized hypergeometric tau functions
Kanehisa Takasaki
Department of Mathematics, Kindai University,
Kowakae 3-4-1, Higashi-Osaka, 577-8502, Japan
Email: takasaki@math.kindai.ac.jp

1 Hypergeometric tau functions
The hypergeometric tau functions are tau functions of the 2D Toda hierarchy of the form
\[T(s, t) = \sum_{\lambda \in \mathcal{P}} S_\lambda(t) g_\lambda(s) S_\lambda(-\bar{t}), \]
where \(t = (t_k)_{k=1}^\infty \) and \(\bar{t} = (\bar{t}_k)_{k=1}^\infty \) are two sets of the time variables, and \(\mathcal{P} \) is the set of all partitions \(\lambda = (\lambda_i)_{i=1}^\infty \). \(S_\lambda(t) \)'s are the Schur functions
\[S_\lambda(t) = \det \left(S_{\lambda_i - i + j}(t) \right)_{i,j=1}^{\infty}, \quad \sum_{n=0}^{\infty} S_n(t) z^n = \exp \left(\sum_{k=1}^{\infty} t_k z^k \right). \]
The coefficients \(g_\lambda(s) \) are defined by the somewhat formal expression
\[g_\lambda(s) = \prod_{i=1}^{\infty} g_{\lambda_i - i + s + 1} / \prod_{i=1}^{\infty} g_{-i + 1} \]
for a diagonal matrix \(g = \text{diag}(g_i)_{i=-\infty}^\infty \in \text{GL}(\infty) \), representing the matrix elements of an associated Clifford operator in the fermionic Fock space.

2 Specialized hypergeometric tau functions
We consider the specialized tau function
\[T(s, t) = T(s, t, -c), \]
where \(c = (c_k)_{k=1}^\infty \) are a set of constants, and \(g \) is specialized to
\[g = e^{\beta (\Delta - 1/2)^2/2} Q^\Delta, \quad \Delta = \text{diag}(i j)_{j=-\infty}^\infty \]
where \(\beta \) and \(Q \) are parameters. The fermionic matrix elements \(g_\lambda(s) \) can be expressed as
\[g_\lambda(s) = \exp \left(\frac{\beta}{2} \left(\kappa(\lambda) + 2 s |\lambda| + \frac{4s^3 - s}{12} \right) \right) Q^{s |\lambda| + s(s+1)/2}, \]
where \(|\lambda| = \sum_{i=1}^{\infty} \lambda_i \) and \(\kappa(\lambda) = \sum_{i=1}^{\infty} \lambda_i (\lambda_i - 2i + 1) \). The 2D Toda tau function \(T(s, t, \bar{t}) \) with these coefficients is known to be a generating function of the double Hurwitz numbers of \(\mathbb{CP}^1 \) [2].
We are particularly interested in the case where $t = -c$ is further specialized to the following values:

\[
(i) \quad c_k = \delta_{k,1} \quad (ii) \quad c_k = \frac{q^{k/2}}{k(1-q^k)} \quad (1)
\]

As we show, these two cases are related to integrable hierarchies of the Volterra type. These systems emerge as a reduction (or a subsystem) of the lattice KP hierarchy.

3 Volterra-type hierarchies in lattice KP hierarchy

The specialized hypergeometric tau function $T(s, t)$ yields a solution of the lattice KP hierarchy

\[
\frac{\partial L}{\partial k} = [B_k, L], \quad L = \Lambda + u_1 + u_2 \Lambda^{-1} + \ldots, \quad \Lambda = e^s.
\]

The Lax operator L can be expressed as $L = WAW^{-1}$ in terms of the dressing operator $W = 1 + w_1 \Lambda^{-1} + w_2 \Lambda^{-2} + \ldots$. One can thereby define log L (logarithm) and L^α (fractional or irrational power) as

\[
\log L = W \cdot \log \Lambda \cdot W^{-1}, \quad L^\alpha = W^\alpha \Lambda^\alpha W^{-1}.
\]

Theorem 1 The logarithm of L for the case (i) of (1) can be expressed as

\[
\log L = \log \Lambda + u \Lambda^{-1} = \partial_s + u \partial_s, \quad u = u(s, t). \quad (2)
\]

Theorem 2 Let β be parametrized as $\beta = (\tau + 1) \log q$ in the case (ii) of (1). Then the fractional power $L^{1/(\tau+1)}$ of L for this case can be expressed as

\[
L^{1/(\tau+1)} = (1 + u \Lambda^{-1})^{1/(\tau+1)}, \quad u = u(s, t). \quad (3)
\]

If τ is equal to a positive integer N, (3) coincides with the Lax operator of the $N+1$-step Bogoyavlensky-Itoh (aka hungry Lotka-Volterra) hierarchy [3, 4] on the fractional lattice $\mathbb{Z}/(N+1)$. (3) is its large-N (or continuum) limit. These Volterra-type hierarchies thus capture the essential integrable structure of the specialized hypergeometric tau functions.

Let us also mention that the case (i) is related to the single Hurwitz numbers of \mathbb{CP}^1, for which Theorem 1 is reported in a recent paper [5]. The case (ii) is related to the cubic Hodge integrals [6].

References

Soliton solutions of the DKP equation and networks

Yuta Tanaka
Department of Pure and Applied Mathematics,
Graduate School of Fundamental Science and Engineering, Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan
Email: tanayu@suou.waseda.jp

Soliton solutions of the KP equation have Wronskian representation and their interactions are closely related to permutations and networks. By contrast, soliton solutions of the DKP (coupled KP) equation have Wronski-type Pfaffian representation and their interactions still have not been clarified clearly. In this presentation, we explain the relation between networks and soliton solutions of the DKP equation using normalization of skew-symmetric matrices and their networks. This is joint work with Shinya Kido, Yasuyuki Watanabe, Ken-ichi Maruno and Saburo Kakei.
On classical orthogonal polynomials from Jacobi to \(-1\) polynomials

Satoshi Tsujimoto
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Kyoto, 6068501 Japan
Email: tsujimoto.satoshi.5s@kyoto-u.jp

We consider several types of eigenvalue problems related to the classical orthogonal polynomials such as the Jacobi polynomials, the Krawtchouk polynomials, the Askey-Wilson polynomials and so on. The first half of this talk will be devoted to the algebraic approaches for deriving the Askey-Wilson polynomials. We will show that \(q\)-oscillator algebra can achieve the Askey-Wilson algebra and that the double affine Hecke algebra of rank 1 naturally leads to circle analogs of the Askey-Wilson polynomials. In the second half of this talk we consider the eigenvalue problem associated with the Dunkl-type differential operator from which we can construct several classes of \(\text{“-1”}\) polynomial systems. The results of this talk are based on the joint work with L. Luo, L. Vinet and A. Zhedanov.

References

On the direct and inverse scattering problems for udKdV

Ralph Willox
Graduate School of Mathematical Sciences, the University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914 Japan
Email: willox@ms.u-tokyo.ac.jp

We solve the direct scattering problem for the ultradiscrete Korteweg de Vries (udKdV) equation over the real numbers. More precisely, we construct explicit bound state and non-bound state eigenfunctions, for any initial potential with compact support for the scattering problem for udKdV. We then go on to show how to reconstruct the potential in the scattering problem at any time, using an ultradiscrete analogue of a Darboux dressing transformation, based on data uniquely characterising the soliton content and a ‘background ’. These data are obtained from the initial potential by Darboux undressing transformations. This is joint work with J.J.C. Nimmo and C. Gilson [1].

References

Construction of exact soliton solutions in the spinor $F = 1$ Bose-Einstein condensates by Hirota bilinear method

Haoyu Yang
Department of Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan
Email: yanghaoyu0825@gmail.com

Bose-Einstein condensates (BECs) have received extensive attention since their first experimental realization in 1995. Multi-component BECs can be created by overlapping two single-component BECs with atoms in two spin (hyperfine) states or mixtures of two different atomic species by using far-off-resonant optical techniques for trapping of ultracold atomic gases. This gave rise to the observation of various phenomena that are not present in single-component BECs. A spinor condensate formed by atoms with spin F is described by a macroscopic wave function with $2F + 1$ components.

The integrable three components Gross-Pitaevskii (GP) equations for $F = 1$ spinor BECs in one-dimension without external magnetic fields [1]

\[
i\phi_{1,t} + \phi_{1,xx} = (\overline{c_0} + \overline{c_2})(|\phi_1|^2 + 2|\phi_0|^2)\phi_1 + (\overline{c_0} - \overline{c_2})|\phi_{-1}|^2\phi_1 + 2\overline{c_2}\phi_{-1}^*\phi_0^2,
\]

\[
i\phi_{-1,t} + \phi_{-1,xx} = (\overline{c_0} + \overline{c_2})(|\phi_{-1}|^2 + 2|\phi_0|^2)\phi_{-1} + (\overline{c_0} - \overline{c_2})|\phi_1|^2\phi_{-1} + 2\overline{c_2}\phi_1^*\phi_0^2,
\]

\[
i\phi_{0,t} + \phi_{0,xx} = (\overline{c_0} + \overline{c_2})(|\phi_1|^2 + |\phi_{-1}|^2)\phi_0 + 2\overline{c_0}|\phi_0|^2\phi_0 + 2\overline{c_2}\phi_{0}^*\phi_1\phi_{-1},
\]

where $\overline{c_0} = \overline{c_2} = \pm c$ $(c > 0)$, admit bright soliton solutions, dark soliton solutions and rogue wave solutions which were obtained by using the inverse scattering method[1, 2, 3].

The Hirota bilinear method is known as one of powerful tools to construct exact solutions of integrable partial differential equations. Other than having an advantage in systematic algebraic construction of exact solutions compared with the inverse scattering method, one of advantages of the Hirota bilinear method is to clarify the relationship with other soliton equations such as the KP equation. However, in our knowledge, constructions of exact solutions of the integrable three components GP equations for $F = 1$ spinor BECs by the Hirota bilinear method is still missing.

In this presentation, we will show how to construct soliton solutions of the three component GP equation for $F = 1$ spinor BECs by using the Hirota bilinear method. This is joint work with Yuta Tanaka and Ken-ichi Maruno.

References

