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New Aspects of the Bilinear Equations

BERERELEER LHES
Ryogo Hirota
Professor Emeritus, Waseda University

We summarize the present report:
1. New solutions to the ultradiscrete soliton equations

(a) Oneis a “negative-soliton” which satisfies the ultradiscrete KAV equation( Box-
Ball system).
But there is not a corresponding traveling wave solution for the discrete KAV
equation.

(b) The other one is a “static-soliton” which satisfies the ultradiscrete Toda equa-
tion.
But there is not a corresponding traveling wave solution to the discrete Toda
equation.

Ryogo Hirota (2009).
2. Pfaffian Expressions
(a) We know the solutions to the discrete equations are expressed by pfaffians.

However pfaffians cannot be ultradiscretized because of negative problem.

(b) We have found that Casorati permanents play the same role as the Wronskian
in the ultradiscrete equations.
D.Takahashi and R.Hirota,(2007).
H.Nagai,(2008).

3. Ultradiscrete Analogue of the Identities of Pfaffians (Determinants)
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(a) The Casorati permanent solves the ultradiscrete 2-D Toda equation.

CEEEH T YV 2 h—BERIREAVWEY ) b VRO, EHA K. SRR
(b) Identities of ultradiscrete pfaffians

Ryogo Hirota,(2009).

4. Periodic Phase Solitons

(a) Shinya Nakamura (Waseda Univ.) has found that the ultradiscrete hungry
Lotka-Volterra eq.

Fy+ B = max(F + I Py + Py, — 1)
exhibits “Periodic Phase Soliton” of the form
F™ = max(0,pm — gn + ¢(n)),
where ¢(n) is a periodic function of n with a period M.

But there is not a corresponding solution for the discrete hungry Lotka-Volterra
equation.

(b) He has found 7—function of N periodic phase soliton expressed by the Casorati
permanent. and proved using “permanent technique” that the 7—function
solves the ultradiscrete hungry Lotka-Volterra equation for M = 2.

5. New Gauge Transformation

(a) The bilinear equations are invariant under the simple gauge transformation of
the exponential type.

f — fexp(co+ c1l + cam + czn).

(b) Inspired by Nakamura’s results I have found a discrete equation which is in-
variant under the new gauge transformation

f— fé(n),

where ¢(n) is a periodic function of n with a period M.

(c) The new gauge changes the interaction (phase shifts) of solitons drastically.
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1 New Solutions

Solutions to the ultradiscrete soliton equations have been obtained by ultradiscretizing

the known solutions to the discrete equations.
I review “new solutions” to the ultradiscrete soliton equations,which have no correspond-

ing solutions to the discrete soliton equations.

1. Negative solutions to the ultradiscrete KdV eq.
A discrete KdV eq.(Box and Ball system)

1 1

— m . m+l
'rn+1 - 6(un+1 U, )
Un+1 Un,

is transformed,through the dependent variable transformation

m fn+1fm+1
n fmfm+1 )
into the bilinear eq.
frtpmat = s frt et (L= 0) £ (1)
We look for a “negative-soliton” traveling with the speed 1
m 1]L‘m+1
up = <1, = f(n—m),
fn n+1
which give the following relations
—1 rm+1
n+1 f m m
LR = oyt U, 2
Pl “ 2
+1 rm—1
fn-l—l f - — 1 (3)
fn+lf
Equation (1) is rearranged as
m—1 1 prm+1
fnmf’n—l—l _5fn+1f _'_1_6 (4)
fn fn+1 fm n+1

which is reduced using the relations (2) and (3) to

1= 6um ul 41—,



149

which is not satisfied by a negative-soliton u;* < 1.

However, the above equation is reduced, in the ultradiscrete limit, to the following
form,

0 = max(U7 + U7 — 1,0),
which is satisfied by the negative-soliton
Um <.

The negative-soliton plays an important role in the initial value problem of the Box-
Ball system.

It generates many balls in a box over the capacity of the box after colliding with a
soliton as is shown below.

m=0 {0,1,1,1,1,1,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0}
m=1 {0,0,0,0,0,0,1,1,1,1,1,-2,0,0,0,0,0,0,0,0,0,0,0}
m=2 {0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0}
m=3 {0,0,0,0,0,0,0,0,0,0,0,-2,1,1,1,1,1,0,0,0,0,0,0}
m=4 {0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,1,1,1,1,1,0}
Three balls in a box of capacity 1.

. Static solutions to the ultradiscrete Toda eq.

We have the discrete Toda equation in the bilinear form

frat =t — () = Pl i — (F)7) (5)
which is transformed into the discrete Toda equation

yrrymel (14 82V (14 82V
(Vimy2 (1+ §2Vm)2

~ 52

YT ©)

bl
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through the transformation

Vm = 7?7:’—11—1 71zn—1
" (frr)?

Let
Vit =exp(zy'/e), 6 =-exp(—L/e).
Then we obtain an nonlinear discrete equation of 7,
Tt — 2™ 4 g
[(1 + 02 exp(zpia/€))(1 + 6% exp(ag 1 /¢)
(14 82 exp(z7t/e))?

which is reduced, in the small limit of €, to the ultradiscrete Toda equation,

I,

=elog

gt — 2™ 4 gml
= max(0, z;; — 2L) — 2max(0, z' — 2L) + max (0, z]" ; — 2L).

We look for a static solution V's(n),

Vs(n) = % ™ = fs(n),

to the discrete Toda equation.

The bilinear equation (5) is rearranged as

fatt frn=t L2=1 +52fr7£1-1 1

(f)? (far)?
which is reduced, for a static solution, to
1+ 6% =1+ 6*Vs(n).

Obviously V's(n) does not solve it except a trivial case Vs(n) = 1.

However the above equation is reduce, in the ultradiscrete limit, to
max(0, —2L) = max(0, zs(n) — 2L)
which is satisfied by zs(n) if

zs(n) < 2L, for all n.
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The static solution plays an important role in the ultradiscrete nonuniform Toda equation.

We have calculated a soliton y* passing through junctions in the nonuniform Toda

lattice.

The figure shows the non-uniformity ¢(n) introduced to the discrete Toda lattice,where
the atoms located at —5 < n < 5 are different from others.
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We observe a soliton passing through junctions generates ripples at the junctions.

We have calculated a soliton passing through junctions of the ultradiscrete nonuniform

Toda equation,

m+1

ymH — oy 4yt

= max[0,yT,; — 2L+ c(n + 1)] — 2max[0,y;;" — 2L + ¢(n)]
+max[0, Yy — 2L + ¢(n — 1)].
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In the figures the solid lines express theoretical values of y(m,n) as a function of n, while

the dots indicates numerical values of y;.

All dots are on the solid lines.

Ryogo Hirota, “New Solutions to the Ultradiscrete Soliton Equations”,
STUDIES IN APPLIED MATHEMATICS 122:361-376(2009).



154

2 Pfaffian Expressions

Multi-soliton solution to the soliton equation is expressed by the pfaffian and the bilinear
form of the soliton equation is reduced to the identity of pfaffians.
Multi-soliton to a soliton equation has two types of expression.

1. One is expressed by a sum of exponential functions which is obtained by a pertur-
bational method.

2. Another is expressed by a pfaffian (determinant).

The perturbational method of finding soliton solution is very powerful but difficulty of
finding solution increases very rapidly as increasing number of solitons included in the
solution.

However we may assume an algebraic structure of solution by the perturbational method
and find a pfaffian expression for solution.

The 7—function f™ in the perturbed form has the following form in general
fm — 1 + 6"1 (mv") _+_ enZ(mrn) __|_ alZenl (m:ﬂ)+fl2(m>”)’
and is easily ultradiscretized.
However pfaffians (determinants) can not be ultradiscretized due to negative terms.
A remedy for the problem was found by Takahashi and Hirota.
D.Takahashi and R.Hirota:
“ Ultradiscrete Soliton Solution of Permanent Type”,

JPSJ 76 (2007) 104007.

We have expressed the multi-soliton solutions to an ultradiscrete soliton equation called
“Box and Ball system” by ultradiscretized permanents instead of determinants.

A permanent is a signature free determinant.

Nagai has shown that soliton solutions to the ultradiscrete Toda equation are expressed
by the ultradiscretized permanents.

H.Nagai:
“ A New Expression of Soliton Solution to the Ultradiscrete Toda Equation”,
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J Phys. A 41 (2008) 235204,

These facts suggest that there must be an idenity of ultradiscretized permanents instead
of determinants.

More generally we expect an identity of ultradiscretized hafnians instead of pfaffians.
A hafnian is a signature free pfaffian introduced by Caieniello.

3 Ultradiscrete Analogue of Identities of Pfaffians

(a) Plicker relation:

We look for an ultradiscrete analogue of the following simple identity of determinants

a; Qg as Qg . a; as Ao Q4 a1 Qa4 as as -0
bi by || b3 by bi b3 || by by by by || by by |
which is one of the Pliicker relations.
We replace the determinants by the corresponding permanents
a; Gz as a4 | |01 as az a4 a; a4 az as -0 (7)
N 7 i N O N i R T A
Let each term in Eq.(7) be ¢1, ¢» and g3,namely
Q1= o a2 da a4l _ a1a3byby + aiasbybz + azazbiby + azasbbs,
bi by N by by .
Q@ = args Rl a1a2b3by + aiagbybs + azazbiby + azashi by,
by by |, | by ba |,
g3 = o 92 95— a1a2b3bs + a1a3boby + agasbibs + azasbi by,
by by + by b3 +

where g1, g2 and g3 have no negative terms and can be ultradiscretized.

However the corresponding Pliicker relation does not hold,

q1 — @2 + g3 = 2(a1asbabs + azasbibs) # 0. (8)
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We notice that the products of the permanents, ¢;, g2 and ¢3 are decomposed into a sum of
common terms gi2, ¢i13 and go3,where g;; is the common term of ¢; and g; for 7,5 = 1,2, 3,

g1 = Q2+ q13, Q2 = QG2+ Ge3, ¢3 = G13 + Qa3, 9)

where

G12 = 104b2b3 + a2a3b; by,
(13 = a1a3baby + a2a4b; b3,
Qa3 = a102b3bs + azasbybs.

An ultradiscrete analogue of the Pliicker relation is obtained as follows.
Replacing the determinants by the correspoding permanents we have

1+ g3 = Qo (10)
Let
q; = exp(Q;/e) for i =1,2,3,
¢ij = exp(Qi;/e) for 4,5 =1,2,3.

In the small limit of ¢ we have an ultradiscrete analogue of the Pliicker relation , Eq.(10),

Q2 = max(Q1, Qs3), (11)

which does not hold in general.
We investigate under what conditions on @1, @2 and @3 Eq.(11) does hold. The ultradis-
crete form of Eq.(9) are

Q1= max(le, Qla),
Q2 = maX(Qm, st),

Q3 = max(Q13, @23). (12)
Substituting these expressions into Eq.(11) we obtain
max(le, Q23) = max(Qu, Qns, st)- (13)

Obviously Eq.(13) does hold if

Q13 < max(Q12, @23)-

But it does not hold if
Q13 > max(Q12, Q23)-
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However if Q15 > max(Q12, @23) we find, using Eq.(12)

@1 = Qs.
Hence we obtain the following algebraic identity of the ultradiscretized permanents,
[Q2 — max(Qs, Q3)](Q1 — @3) =0, (14)

which we call ”ultradiscrete analogue of the Pliicker relation”.
(b) Identities of pfaffians:

It is known that a variety of soliton equations exhibiting multi-soliton solutions ex-
pressed by pfaffians give rise to the following identity of pfaffians,

pf(1,2,3,4,5,6,- - ,2n)pf(5,6,---,2n) = pf(1,2,5,6,: -, 2n)pf(3,4,5,6,---,2n)
—pf(1,3,5,6,-- -, 2n)pf(2,4,5,6,---,2n) + pf(1,4,5,6,---,2n)pf(2,3,5,6,---,2n).

I replace the above pfaffians by the corresponding hafnians.
Let the products of hafnians be

fo= (1,2,3,4,5,6,---,2n)(5,6,---,2n),
fi= (1,2,5,6,---,2n)(3,4,5,6,---,2n),
fo=(1,3,5,6,---,2n)(2,4,5,6,--,2n),
fa= (1,4,5,6,-~-,2n)(2,3,5,6,~--,2n).

I have proved by induction that the products of the hafnians are decomposed into the
following forms

fo= for + fo2 + fos,
f1 = for + fiz + fis,
fa = foo + fi1z + fos,
f3 = fos + f13 + fos.

Consider a relation,

fot+fo=fitfs (15)

which does hold for pfaffians but not for hafnians.
Following the same procedure as the one used before I find the algebraic idenity of the
ultradiscretized hafnians,

(m&X(Fo, F2) - max(Fl, F3))(F0 — Fg)(Fl - F3) = 0,
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where Fy, Fy, F; and Fj are the ultradiscrete form of fo, f1, f2 and f3,respectively.
We call it the ultradiscrete analogue of the identity of the pfaffians.

Ryogo Hirota, “Ultradiscrete analogue of the Identity of Pfaffians” , RIMS Kékyiroku
Bessatsu B13(2009),95-124.

4 Periodic Phase Solitons
We know that the hungry Lotka-Volterra eq.

L+ 6) fra St = i + o frn M
exhibits 1—soliton solution for an integer M,

fr=1+4+r(myn), ri(m,n)= w{"k%"_m),
" 140+ R R+ Y
! 1+6(1+k + K+ + kM)

The ultradiscrete hungry Lotka-Volterra eq.

E™, + Fr+ = max(F" + Fih Foa + Frtia—1)
is known to describes an extended ”Box and Ball system”. In this system all balls are
numbered and the balls with the smaller number moves earlier.

D.Takahashi “On some soliton systems defined by using boxes and balls”,1993 Interna-
tional Symposium on Nonlinear Theory and its Applications(NOLTA’93) Hawaii,U.S.A.,
December 5-10,1993,

I have found numerically that the ultradiscrete hungry Lotka-Volterra equation exhibits
the following soliton solutions for M = 2.
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I called it “Wiggler”.

(a) Shinya Nakamura (Waseda Univ.) discovered that “Wiggler” is expressed by the
following 7— function,

F™ = max(0, s1(m,n) + ¢1(n)),
s1(m,n) =pim — a1(n —mn1),
p1=Mqg —1>0,

under the condition
q > ¢1(n+1) — ¢1(n), foralln
where ¢;(n) is periodic function of n of period M,

$1(n+ M) = ¢1(n), for all n.
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We now call it “ periodic phase soliton” because of the periodic phase factor ¢1(n).
We have found that there is not a corresponding solution for the discrete hungry
Lotka-Volterra equation.

(b) He has also found that 7—function of N periodic phase soliton expressed by the
Casorati permanent,

Fr = %max
|s1 4+ d1(n)| + ¢1(n),  [s1+ 3¢+ dr(n+ 1)+ ¢i(n+1),
|82 4+ d2(n)| + ¢2(n),  |s143q + da(n+ 1)+ ¢2(n+1),

sy + dn(n)| + én(n), sy +3qy+dn(n+ 1)+ én(n+1), -

and proved using “permanent technique” that the 7—function solves the ultradis-
crete hungry Lotka-Volterra eq. for M = 2.

Shinya Nakamura: “A periodic phase soliton of the ultradiscrete hungry Lotka-Volterra
equation”,J.Phys.A:Math.Theor.42(2009)49504
5 Gauge Transformations

The bilinear equations are known to be invariant under the simple gauge transformation
of the exponential type,

f — fexp(co + c1l + com + c3n).

Inspired by Nakamura’s results I have found that a discrete equation

1 __ +1 +1 +1
St = fr (e i — e fR ), (16)
is invariant under the new gauge transformation,
f— fé(n),

where ¢(n) is a periodic function of n with a period M.

The new gauge transforms Eq.(16) into

™ $(n+ 1) g(n) = fro(n) frité(n + 1) + 8[fi pp(n — M) frhr i d(n + M +1)
—f;n—M+1¢(n -M+1) Z’fﬁw(n + M),
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which is reduced , by the periodicity of ¢(n) = ¢(n + M), to Eq.(16).

I call Eq.(16) “Discrete Hungry Lotka-Voltera equation of BKP type” for an integer
M, which was, for M = 2, called “Discrete Sawada-Kotera equation.

Let
+1
w™ = frq;n—M-‘rlfT’LT-Lﬁ-M
==,
"
m fm+1
™ = n—MJn+M+1
==
" fr i

Then Eq.(16) is transformed into a coupled nonlinear discrete equations,

wm+1 =™ MIP 1+ 6(3;21—1' _ w;n—j)

n n i 1 _1_5(3::?:—]1 _ w;nj;l)’
1+ (27 — Wt pr)
1+ 8(anir — wisn)

aptt = a7 (wp ™t /wl)

7—function of one periodic phase soliton is given by

f'rT =1 + Tl(m7 ’fl),
ri(m,n) = Wik (n),
1+ 6/kM

(4)1 = ———‘—M—

1+ 0k}
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Periodic phase soliton of singular type (¢(n) < 0 for some n).

In the figures the solid lines express theoretical values of z(m, n) as a function of n, while
the dots indicates numerical values of z7;.

All dots are on the solid lines.
The new gauge changes the interaction (phase shifts) of solitons drastically.

The usual 2-soliton to Eq.(16) is given by
fa(m,n) =1+ ri(m,n) + ra(m,n)

+aior1(m, n)ra(m,n),
where

ri(m,n) = wg"lcj(.n_”j ),



_ 1+0/k}"

W, = —————+

S e
" kKM — kM ki —k;

= (hik)M —1kik; — 1
fori,j =1,2.

While 2-periodic phase soliton solution is given by
fo(m,n) =1+ ri(m,n) +ra(m,n) + ara(n)ri(m, n)ra(m, n),
where

ri(m,n) = w§”k§n—nj)¢j (n),

1+ 6/kM
AR TR
o R R
Y (kik)M =1
M ni—1
aij(n) = —(1/84)] 21 bij(n1 +n) Hl hij(ng +n)],
ni= ny=

M
Ay = [1:[1 hij(n)] — 1,
bij(n) = —[hi(n) — h;(n)]cy,
hij(n) = hi(n)h;(n),
hz(n) = kz¢z(n)/¢z(n - 1)7 fOI' /l’)] = 1) 2; 3
The usual 3-soliton to Eq.(16) is given by
fs(m,n) =1+ r1(m,n) +r2(m,n) + rs(m,n)

+a1o71(m, n)ro(m, n) + arzri(m,n)rs(m, n) + agara(m, n)rs(m,n)

+aq2371(m, n)ra(m, n)rs(m, n),
where

ri(m,n) = wgnkj('n_"j),

_1+48/k)
AT
Qg i _k;y[ ki by

= (hik)M — 1kik; — 1
123 = @12013023,

165

(17)
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fori,5=1,2,3.
While 3-periodic phase soliton solution is given by

fa(m,n) =14 ri(m,n) + ro(m,n) + rs(m,n)
+a12(n)r1(m, n)re(m, n) + aiz(n)ri(m, n)rs(m, n) + ags(n)ra(m, n)rs(m,n)
+ai93(n)r1(m, n)ra(m, n)rs(m, n),

where
a123( )= (1/A123)
ni—1

M
Z bizs(n1 + n) H hi2s(ne + n)l,

n1; ng=1
Aqgz = [I_I hlzs(n)] -1,
bizs = bia(n) — biz(n) + bas(n),
h12 (n)hQ(n)hg,(n),
b12 [a12(n)hi2(n) — aa(n — 1)hs(n)]ciscas,

(n) = ( (
bi3(n) = [a13(n)has(n) — ai3(n — 1)ha(n)]c1acas,
bos(n) = ( (

[ags(n)hos(n) — ags(n — 1)hy(n)]cracis.
What we get,substituting the conjectured 7—function (17) into the bilinear form (16), is
not an explicit form of a;3(n) nor aja(n+1), but a relation between ajz(n) and ajp(n+1).

We have totally M such relations,which determine an individual aja(n). ajz is not a
scalar but a vector whose elements are aj3(n), forn =1,2,---, M.



