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Abstract. A special type of piecewise-linear mapping is discussed. It is
obtained by ultradiscretizing the Quispel–Robert–Thompson system. In a
special case of a parameter, it becomes a periodic mapping with a constant
period for any initial data. In a general case, it becomes an integrable
mapping and a period of solution is constant for each solution orbit. We
show a structure of solutions discussing the dynamics in a phase plane from
a viewpoint of the integrable system theory.

1. Introduction

There have been many studies using a piecewise-linear mapping in the
area of dynamical system theory[1]. The standard form of one dimensional
mapping is

xn+1 = f(xn)

where f(x) is linear in each local region of x. For example, the tent map
f(x) = 2x (0 ≤ x ≤ 1/2), 2(1 − x) (1/2 < x ≤ 1) and the Bernoulli shift
f(x) = 2x (0 ≤ x ≤ 1/2), 2x − 1 (1/2 < x ≤ 1) are often used in the
chaotic system theory to explain the typical dynamics of chaos. One of the
advantages to study a piecewise-linear mapping is that we can analyze its
dynamics exactly utilizing the local linearity.

Recently, piecewise-linear mappings appear together with the ultradis-
cretizing method in the integrable system theory[2]. For example, consider
the discrete Painlevé equation[3],

xn+1 = (1 + αλnxn)/xn−1,

which is integrable because it has a conserved quantity. If we use a trans-
formation of variable xn and constants α, λ,

xn = eXn/ε, α = eA/ε, λ = eL/ε,
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and take a limit ε → +0, we obtain an ultradiscrete Painlevé equation

Xn+1 = max(0, Xn + A + L)−Xn−1. (1)

Note that the max function is defined by

max(A,B) =

{
A (A ≥ B)
B (A < B)

,

and we use the following formula in the derivation,

lim
ε→+0

ε log(eA/ε + eB/ε + · · · ) = max(A,B, · · · ).

The remarkable features of (1) are (i) It is also integrable, that is, it has a
conserved quantity, (ii) X can be discrete, that is, Xn is always integer if
A, L and initial values of Xn are all integer.

In this paper, we discuss a structure of solutions to an integrable
piecewise-linear mapping from a viewpoint of the integrable system the-
ory. The mapping is obtained by ultradiscretizing an integrable difference
system, the Quispel–Robert–Thompson (QRT) system. The general form
of the QRT system gives a wide range of difference equations[4]. However,
when we ultradiscretize the equations, positivity of solution is necessary.
Therefore, we restrict its form to the following special one in this paper,

xn+1 =
1 + axn

xσ
nxn−1

, (2)

where a is a constant and σ = 0, 1 or 2. Using transformations, xn = eXn/ε

and a = eA/ε, and taking a limit ε → +0, we obtain

Xn+1 = max(0, Xn + A)− σXn −Xn−1, (3)

from the above equation[3]. Note that (3) with σ = 0 is equivalent to (1)
with L = 0.

First we consider a case of A = 0. We show (3) is linearizable in that
case by a transformation of variable and its solutions are obtained in an
explicit form. Second we consider a case of A 6= 0 and discuss a structure
of solutions.

2. Periodic case

In this section, we assume A = 0 in (3) (or a is positive definite in (2)).
Then we obtain

Xn+1 = max(0, Xn)− σXn −Xn−1. (4)
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We can easily show that any solution to this equation is always periodic
with a constant period. For example, in the case of σ = 0, X2 ∼ X6 are
expressed by initial values X0 and X1 as follows:

X2 = max(0, X1)−X0, X3 = max(0, X0, X1)−X0 −X1,

X4 = max(0, X0)−X1, X5 = X0, X6 = X1,
(5)

where max(A,B, C, · · · ) denotes the maximum value among A, B, C, · · · .
We use the following formulae on max function in the derivation of the
above solution,

max(A,B) = max(B,A),
max(A, max(B, C)) = max(max(A,B), C) = max(A,B, C),
max(A,B) + X = max(A + X, B + X).

For example, X3 is expressed by X0 and X1 through the following calcula-
tion,

X3 = max(0, X2)−X1 = max(0, max(0, X1)−X0)−X1

= max(X0, max(0, X1))−X0 −X1 = max(0, X0, X1)−X0 −X1.

Since (5) gives X5 = X0 and X6 = X1 and (4) is of the second order,
any solution from arbitrary X0 and X1 other than X0 = X1 = 0 is always
periodic with period 5. The case of X0 = X1 = 0 is exceptional and Xn is
always 0 in that case. Similarly, any solution is periodic with period 7 and
8 in the case of σ = 1 and 2 respectively.

Equation (4) is derived from (2) through the ultradiscretization. If we
assume σ = 0 and a = 1 in (2), solutions to (2) are also periodic with a
constant period[5]. We obtain the following pattern of solution,

x2 =
1 + x1

x0
, x3 =

1 + (1 + x1)/x0

x1
=

1 + x0 + x1

x0x1
,

x4 =
1 + (1 + x0 + x1)/x0x1

(1 + x1)/x0
=

(1 + x0)(1 + x1)
(1 + x1)x1

=
1 + x0

x1
,

x5 =
1 + (1 + x0)/x1

(1 + x0 + x1)/x0x1
=

(1 + x0 + x1)x0

1 + x0 + x1
= x0,

x6 =
1 + x0

(1 + x0)/x1
= x1.

(6)

Therefore, a solution from any positive x0 and x1 is always periodic with
period 5. Moreover, every solution in (6) is transformed to that in (5)
through the above ultradiscretization. It means that both the difference
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equation and its solution can be transformed consistently through the ul-
tradiscretization.

3. Linearizability of periodic piecewise-linear mapping

Equation (4) can be rewritten by the following piecewise-linear mapping,
{

Xn+1 = Yn

Yn+1 = max(0, Yn)− σYn −Xn
. (7)

The only nonlinearity of this mapping is the term max(0, Yn). Therefore a
different type of linear mappings are applied to the upper and the lower
half plane in a phase plane (Xn, Yn),

(
Xn+1

Yn+1

)
=





(
0 1
−1 1− σ

)(
Xn

Yn

)
(Yn ≥ 0)

(
0 1
−1 −σ

)(
Xn

Yn

)
(Yn < 0)

.

We can easily see the periodicity of this mapping by the following geometric
dynamics in a phase plane. In the case of σ = 0, let us consider a sequence
of mappings of a point P0(c, 0) (c > 0) in the phase plane (Xn, Yn). Then,
we obtain a periodic sequence of points,

P0(c, 0) → P1(0,−c) → P2(−c, 0) → P3(0, c) → P4(c, c) → P0 → · · · .

Since the parameter c is an arbitrary positive number, the phase plane is
divided into 5 local ‘fan’ areas as shown in Figure 1. Each area is linearly
mapped each other in the following order,

I → II → III → IV → V → I → · · · ,

and segments PjPj+1 are mapped as follows,

P0P1 → P1P2 → P2P3 → P3P4 → P4P0 → P0P1 → · · · .

Though this mapping is nonlinear, it is equivalent to a linear mapping
defined by a rotation by an angle −2π/5, through a combination of local
affine transformations. Figure 2 shows corresponding 5 fan areas mapped
by this linear mapping in a phase plane (Un, Vn).

The transformation from (Un, Vn) to (Xn, Yn) is again expressed by the
max function as follows,

Xn = max
(

sin
2π

5
· Un + (1− cos

2π

5
) · Vn, sin

π

5
· Un + cos

π

5
· Vn,

sin
2π

5
· Un + cos

2π

5
· Vn

)
.

(8)
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Figure 1. 5 fan areas in the phase plane.
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Figure 2. 5 fan areas mapped by a rotation by −2π/5.

Note that we omit an expression of Yn since Yn = Xn+1. Since Un =
r0 cos(θ0−2nπ/5) and Vn = r0 sin(θ0−2nπ/5), we can get a general solution
of Xn as follows,

Xn = r ·max
(
− sin(θ0 − 2n + 2

5
π) + sin(θ0 − 2n

5
π),

− sin(θ0 − 2n + 4
5

π), sin(θ0 − 2n + 8
5

π)
)
,
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where r (> 0) and θ0 are arbitrary constants.
We can obtain a general solution of (4) for σ = 1 and 2 similarly. Thus

we show that the mapping (7) equivalent to (4) is a linearizable mapping
and solutions are obtained by the linearizability. Note that the mapping,
the transformation and the solutions are all expressed by the max function
consistently.

4. Integrable case

In the previous sections, we discussed the ultradiscrete QRT system (3)
with a special parameter A = 0. In this section, we analyze the system
with a parameter A 6= 0. For simplicity, let us assume σ = 0. Moreover, if
we use a scaling of variable |A|Xn → Xn, then Xn follows

Xn+1 = max(0, Xn ± 1)−Xn−1, (9)

where Xn + 1 is chosen when A > 0 and Xn − 1 when A < 0. Therefore,
solutions to (3) for A = ±1 and 0 give those for general A through the
scaling. Below we consider only the case of A = +1,

Xn+1 = max(0, Xn + 1)−Xn−1,

or {
Xn+1 = Yn

Yn+1 = max(0, Yn + 1)−Xn
. (10)

It is a well known fact that there exists a conserved quantity for (2). In
the case of σ = 0, the quantity is

h =
1

xnxn+1
(a + (1 + a2)(xn + xn+1) + a(x2

n + x2
n+1)

+ xnxn+1(xn + xn+1)).

Using transformations xn = eXn/ε and a = e1/ε and defining H by
lim

ε→+0
ε log h, we obtain a conserved quantity for (10),

H = max(1−Xn − Yn, 2−Xn, 2− Yn,

1 + Xn − Yn, 1−Xn + Yn, Xn, Yn).

Orbits of solutions in the phase plane (Xn, Yn) are given by contour lines
obtained by H = const. Figure 3 shows some contour lines of H. The point
P (1, 1) is a fixed point of the mapping, that is, Xn = Yn = 1 for any n
if X0 = Y0 = 1. Positions of vertices of the hexagon Γ are (3, 3), (3, 1),
(1,−1), (−1,−1), (−1, 1) and (1, 3).



AN INTEGRABLE PIECEWISE-LINEAR MAPPING 7

Xn

Yn

P

Γ

Figure 3. Contour lines of H.

In an inner region of Γ , any solution other than the fixed point P is
always periodic with period 6. Since Xn ≥ −1 and Yn ≥ −1 in that region,
the mapping (10) becomes a linear mapping and the periodicity is due to
this linearity.

In the outer region of Γ , behaviour of solutions becomes more compli-
cated. Solution is still periodic but its period depends on an orbit. Figure 4
shows a solution from (X0, Y0) = (4, 4) which is periodic with period 17.
Since all segments connecting two neighboring Pj ’s are included in a region
defined by Yn ≥ −1 or Yn ≤ −1, the segment P0P6 is mapped linearly in
the following sequence,

P0P6 → P1P7 → · · · → P10P16 → P11P0 → · · · → P16P5 → P0P6 → · · · .

It means that a solution from any point on the polygon shown in Figure 4 is
always periodic with period 17. However, if we change the orbit, the period
becomes different. For example, the period of a solution from (X0, Y0) =
(5, 5) is 11 and that from (9/2, 9/2) is 39.

5. Period of orbit

Next we discuss a relation between the period of a solution to (10) and
its orbit. Figure 5 shows a general orbit in the outer region of Γ (c > 3).
Every point on AC comes back to AC after a certain times of mapping.
Any point on AB comes back to AC after 6 mappings and that on BC
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Figure 4. Solution from (X0, Y0) = (4, 4)

(c, c)

(c, 1)A

(c− 2,−1)B

(1, 2− c)
C

(−1, 2− c)

(2− c,−1)

(2− c, 1)

(1, c)

Figure 5. General orbit of (10) in the outer region of Γ (c > 3).

after 5 mappings. Figure 6 (a) shows a typical mapping of the former and
(b) the latter. Assume that k counts the number of cycles of mapping and
Pk denotes a point on AC at the k-th cycle of a solution from an initial
point P0. Moreover, define rk by

rk = APk/AC.

By this definition, 0 < rk < 1 holds for any k. Moreover, rk satisfies the
following recurrence formula,

rk+1 =

{
rk + 1− 2

c−1 (rk < 2
c−1)

rk − 2
c−1 (otherwise)

.
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Pk

Pk+1
Pk

Pk+1

(a) (b)

Figure 6. A sequence of mappings of a point on (a) AB, (b) BC.

This is a simple one dimensional dynamical system and we can easily see
the solution is

rk =
{

r0 − 2
c− 1

k

}
,

where {x} denotes a fractional part of x. If rk = r0, that is, Pk = P0, k
must satisfy

{
2

c− 1
k

}
= 0 ⇔ 2

c− 1
k is an integer.

Therefore, if c is a rational number, k satisfying the above condition exists
and the solution from P0 becomes periodic. If not, rk 6= r0 (Pk 6= P0) holds
for any k.

Moreover, we can derive a period of solution from a value of c. If c is
irrational, the period is ∞ according to the above discussion. If c is rational
and is expressed by p/q where p and q are relatively prime integers, the
period of solution is

{
(5p− 3q)/2 (p ≡ q mod 2)
5p− 3q (otherwise)

.

Similar results can be obtained for other cases, (9) with A = −1 and (3)
with σ = 1 and 2. A period of solution is decided by each orbit and does not
depend on the initial position of solution on the orbit. Solutions to (3) with
σ = 2 are reported in the reference [6]. They are derived by ultradiscretizing
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the solutions to the original QRT system (2) including an elliptic function
and the function taking fractional part also appears. Comparing with our
results suggests there is a strong relation between geometric piecewise-linear
dynamics and elliptic functions through ultradiscretization.

6. Concluding remarks

We studied integrable piecewise-linear mappings (3) obtained by ultradis-
cretizing the QRT system. In the case of A = 0, all solutions have the same
period other than the fixed point. The mapping is expressed by a max func-
tion and is linearizable through the transformation of variables including a
max function. Explicit solutions are also expressed by a max function using
this linearizability.

In the case of A 6= 0, we showed a period of any solution on the same
orbit is the same and it depends on the orbit. We can calculate the period
from a parameter of the orbit by the function taking fractional part.

Finally we propose the following future problems. (i) Does a general
class exist for linearizable piecewise-linear mappings? (ii) Can we obtain
such a class by ultradiscretization of difference mappings? (iii) Is there an
integrable piecewise-linear mapping with different periods depending on
initial points on the same orbit?
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