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Abstract. A two-lane cellular automaton traffic model equivalent
to the extended Burger’s cellular automaton has been proposed,
and evolution equations for cars on the two-lane road are obtained.
Configuration of cars on the road are simulated by using the
equations and many metastable local congested states are found in
two-dimensional region on density-flow diagram. There are three
typical states in the congested states: The first is that cars advance

by stop-and go-flow on their own lanes without lane-change and

values of the flow are stable in time. The second is that cars change
the lane periodically with several time-steps. The third is that they

advance changing the lane that induces fluctuation of the flow with



extremely long period. This fluctuation flow exists in wide range
between car densities 5/12 and 3/4. The metastable states are

discussed in connection with the synchronized states observed in

the traffic flow on expressway.
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1. Introduction

Recently traffic problems have attracted a great interest of
many physicists [1-3]. Traffic flow is a kind of many-body systems
of strongly interacting cars and occurrence of traffic jams can be
regarded as a kind of phase transition. Traffic flow on
expressways has been wusually studied by the one-dimensional
traffic models such as car-following models{4-7] and cellular
automaton (CA) models[8-12]. Prototype of CA models for traffic
flow 1s the rule-184 model proposed by Wolfram[13]. The rule-184
model, where the lane is single Iand cars can move by one site at one
time step, has been extended to various models, e.g., a high speed

model[14], a quick start model[15], a slow start m.odel[16]*

bottleneck models{17-20], two-lane models[21-24], cross road
model{25,26] and two-dimensional models[11,27-28].
More recently, a new CA traffic model[29,30] has been proposed

as a transformation of the Burger's equation by using the

ultradiscrete method[31], which is called Burger’'s CA (BCA). The

BCA model is a discrete model derived from the continuous equation
of motion and holds physical properties contained in the original
equation. The ultradiscrete method is quite nice as a method to
elucidate the physical background of CA model. The BCA can also
be regarded as a multi-value generalization of the rule-184 CA.
The multiple states in the BCA can be interpreted to represent
multi-lane expressway in traffic model. The BCA 1is further
extended to several CA models by combination with a high-speed
model, a quick start model and a slow start model. In these

extended BCA models, authors are especially interested in the



EBCA1 model proposed by Nishinari and Takahashi{32], where the
maximum velocity of car is extended to “2” and a slow start model is
included. EBCA1l can be concluded as a multi-value (multi-lane)

and multi-neighbor (high-speed) extension model of the rule-184.
The most notable character of this model is an appearance of new
branches of metastable states; i.e. metastable free flow states and
metastable congested states around the critical density in the
density-flow diagram.

[t 1s known that cars advancing on different lanes of the
expressway 18 synchronized each other and velocities of the cars
become nearly the same[33]. In recent years a lot of traffic data
of many German expressways are accumulated and characteristic
features of the traffic are analyzed by Kerner and Rehborn[34-37].
They have focused on synchronized flow and proposed that there are
three phases in the complex traffic flow: free flow, synchronized
flow and wide moving jam[34]. The jams usually emerge in free
flow through a sequence of two phase transitions: “free flow —
synchronized flow—jams”. The direct transition from free flow to
jam occurs only if the formation of synchronized flow is strongly

hindered{37]. They moreover say that the synchronized flow is

composed of three kinds of phases[35]. Thus the synchronized
phase becomes an essential key word to investigate the traffic flow
and then it is indispensable to elucidation of traffic flow.

Desirable conditions for CA traffic model are that (1) it can

show a phase transition from the free flow to the congested state,

(2) the flow-density diagram shows a shape of ‘inverse 17, (3) the

multiple states of flow exist around the critical density and (4) the



stop-and-go wave exists in congested states, which are all observed
in real data from the expressways. EBCA1l is a model satisfying

these conditions.

In the present paper, a two-lane traffic model equivalent to the
EBCA]1 1s proposed in Section 2. Traffic flow is studied in detail in
Section 3. Many metastable branches in fundamental diagram are
analyzed. In Section 4 configurations of cars on each lane in the
congested states and lane-changing phenomena are investigated
numerically, and dynamics of cars is discussed in connection with

the synchronized states in Section 5.

2. Extended Burger’'s Model (EBCA1) and Equivalent Traffic Model

In EBCAIL, cars advance by following two successive procedures.
a) Cars move to their next site if the site is not fully occupied.
b) Only cars moved in the procedure a) can move one more site if
their next site is not fully occupied after the procedure a).

The procedure b) expresses the slow start rule where cars that

could not move in the prdcedure a) stay at that site even if

their next site is not fully occupied. The velocity is extended to 2
through the procedures a) and b).

These procedures have been expressed by following an evolution
equation[32].
U;t+1 = Uit + b1t — byt
+ min(b;-2t, L— Ujt, — bj-1t+ bjt ) — min(bj-1t, L— Ujs1t— bjt+ bj-1t),
(1)

where Ujt (€ {Z | 0= Ut <L} ) is the number of states at the site

j and time t. L is assumed as a capacity in each site. The number



of moving cars at site j and time t by procedure a) is given by b;t=
min(Ujt,L-Uj+1t). The second term in the right-hand side of eq.(1)
18 the number of cars coming from the site j-1 and the third term
going out to j+1. In procedure b), the number of moving cars at
site j becomes min(bj-1t, L-Uj+it-b;t bj+1t), where the second term in
min represents vacant spaces at site j+1 after the procedure a).

The multiple state expresses that each site can hold L cars at
maximum. Now the multiple states are interpreted as a

multiple-lane model. Let us consider the case L=2 in this paper,

l1.e. two-lane model, which are named A- and B-lane. Both lanes

are divided into discrete sites as shown in Fig.1. A;t and B;jt

denote numbers of cars at site j and time t in the A-lane and B-lane,

respectively and hence A;t and Bjt are always 0 or 1. Above

procedures a) and b) are rewritten for each lane as follows. For

procedure a), a car at site j in A-lane move a'ccording to the

following rule:

If site j+1 in A-lane is empty, the car moves to that site.

(a) If site j+1 in A-lane is occupied and sites j and j+1 in B-lane are
both empty, the car moves to site j+1 in B-lane.

(b) Otherwise, the car stays at site j in A-lane.

As for a car in B-lane, symmetrical rule with respect to lane symbol

18 applied. For procedure b), the following rules (d)~(e) are

applied to only cars moved by rules (a) and (b). For the moved car

1n site j+1,

(c) If site j+2 in A-lane is empty, the car moves to that site.

(d) If site j+2 in A-lane is not empty and site j+2 in B-lane is empty

and site j+1 in B-lane is empty or occupied by the stopped car,



then the car moves to site j+2 in B-lane.
(e) Otherwise, the car stays at site j+1 in A-lane.
Rules (d)~(f) are the same as rules (a)~(c) except that an effect of
the stopped car by the rule (c) is taken into account. Rules (b) and
(e) include a lane-changing rule. An example of moving of cars is
shown in Fig.1, where a) and b) shows procedure a) and b),
respectively.
When the variable Ujt is denoted by the sum of cars of both lanes
Uit = Ajt + Byt | (2)

we can rewrite eq.(1) separately to two equations for cars on A and
B-lanes, considering rules (a)~ (f), as follows:
Attt = At + min(A%-1t, 1—Aj) — min(A*t, 1— Ajit)

+min(1— A%jt, 1— Ajt, B*-1t, B;t)

— min(A*jt, Aj+it, 1— B*t, 1— Bj+qt), (3)

Bjt*1 = Bjt + min(B*;.1t, 1— Bjt) — min(B*;t, 1 — Bj+t)

+min(l— B*j-it, 1— Bjt, A*;.,t, A;jt)

— min(B*jt, Binit, 1= A*jt, 1~ Ay, (4)
where
A*it = At = [Ajt! — min(Ajt! , 1— Ajert!, max(1— At , 1— Ajsqt )

—min(A;t ! | Ajait'! ) 1—Bjait!, max(1— Bttt 1— At D], (5)
B*it = Bjt - [Bjt'! — min(Bjt'1 , 1— Bj+t! | max(1— Bjt, 1— Bj.it ))
—min(Bjt'! | Bjsit'!, 1— Ajait?, max(1—At'1, 1— Bt D). (8)

The last two tefms in the first line in eqs.(3) and (4) express the
number of cars going ahead on their own lane, and the last two
lines show that of cars chang_ingl lane. The asterisked term A* or
B* includes the slow start effect by the rule (e),which has been

given in [32] in a single lane model. We can check that the sum of



eqs.(3) and (4) is equivalent to eq.(1) by using eq.(2). The simplest
way to check this fact is that we take up the possible set of values
of A and B and compare the Uj; in both equations for all cases. We

have confirmed this numerically.

3. Metastable Branches in Fundamental Diagram

[n this section, two-lane traffic flow is simulated according to
the new model obtained in the previous section, and the
fundamental diagram of EBCA1 is discussed by using the two-lane
model. In the following, we consider a periodic road, or a circuit.

Total flow qjt of two lanes is expressed in a conservation form such

as
Ay Uit + Ajqit = 0, (7)
where A and A; are forward difference operators with respect to

the indicated variable. The average total flow Qt over all sites are

defined by

Qt = 1/KLZ q;t, (8)
where K is number of sites in the periodic road. The average flow
of A-lane and B-lane, Qat and QB! can similarly be obtained by flow

qajt and qgr;t of A-lane and B-lane as

QAt

1/K 2 qa;t, Qst 1/K 2 qBjt, (9)
Qt = Qat + Qpt . (10)
Figure 2(a) is a density-flow diagram of the total average flow Qt
of EBCA1 with L=2 and K=24. The flow Q! is recorded during
longer time than the period K starting from different initial

distributions at various car densities p (=N/KL: N is the number of

cars). We obtain a unique value of Q! under the critical density p o



(=1/3). Above p ¢, many different values of Q' are obtained for

different initial distributions, and the flow seems to distribute at

random in the region. Let us study the region in detail in the

followings, which is not considered in the previous papers. Under

careful observation, it is found that these multi-value states can be

classified into three types. The first one is an asymptotically
steady state whose value converges on a constant quickly in time.
The second is an oscillating state caused by lane change, whose
value varies among the constants appearing in the first case with a

period of several time-steps. The third is a fluctuating state

whose value varies with extremely long period. According to this
classification, the density-flow diagram shown in Fig. 2(a) can be
considered as superposition of three diagrams. Diagrams of the first
and the third type flow are shown in Fig. 2(b) and 2(¢), respectively.
All points in Fig.2(b) are on straight lines and the flow quickly

relaxes to a steady state in each case. A branch AO indicates free

flow states and the DE steady jamming states. A part AD of the

AO and the branch BC are metastable[32]. Apart from this main

frame, there are many metastable branches in a parallelogram

region BDGF. In the region, there are K/6— 1 straight branches
parallel to BC with an equal interval. The points are sited on
these branches and make a two-dimensional lattice. As K
increases, the i1nterval between the points decreases and the

parallelogram region - BDGF is filled with the points

quasi-continuously. All these points in it are also metastable.
Figure 2(c) shows the third case of fluctuating states. The

values fluctuate in time and distribute in the parallelogram region



and around the branch BC. Figure 3 shows variation in time of

flows Qt Qat and Qrt at K=240 and p = 0.5396, whose values

fluctuate with long period, especially extremely long in Qat and Qst.
The fluctuating state exists between two critical densities near 5/12
and 3/4, which are just of points B and C. 1In the region under p =
0/12, the state relaxes to free state, jam or the first type
metastable state. Figure 4(a) shows variation of the period T of
fluctuation of Qt for various car densities at K=240. The period
Jjust equals K at the upper critical density o = 3/4. As for Qat and
QBt: their periods are the same and a multiplicative numeral of the
period of Qt : T - n (n!integer), where n=22 in this case. The

multiplicity n distributes widely from several to several hundreds

for different initial distributions and then the period of Qat and Qsgt
usually becomes considerable longer than K. Figures 4(b) and 4(c)
show power spectra I of Qt and Qat, for an initial distribution,
respectively. I 18 defined by I=| X Qtexp(2 = ift/T)|/T. The
corresponding periods are marked by f or fa in each figure. If the

flows Q' Qat and QB! can be expressed by equations, they are as

follows,

Qat=ai-glw t)+az-g(2o t)+...+ an‘gnow t)+ an+i-g((n+Dw t)+.... (11)
Qt=bi-g(w t)+b2-g(2w t)+...+ bn-glnw t) + bns1-gl(n+1) w t)+.... (12)
Qt =a'ngnot)+a’en-g2nwt)+... . (13)

where g is an arbitrary function and ai, a’i and bi are constants.
Simulation indicates the following fact. The low frequency terms in
eqs.(11) and (12) chancel out e_'.a'ﬁ_h other and disappear in eq.(13).
However, high frequency term is totally never canceled out and

small fluctuation remains on Qt (see Fig.(3)), i.e. ai =— b; except

10



i=zn.2n,.... Frequency f (o =2 x f) is T/n. The fluctuation 1s

induced by lane-change of cars. In any way, T becomes long to
almost infinite as K increases. It suggests that the flow in this
fluctuating state is chaotic.

In Fig. 5, time series of the fluctuating flows Qa', Qs' at o =
0.5396 are plotted separately on the density-flow diagram. The Qat
and Qr' move in two-dimensional region on the diagram because

both flow and density of cars in each lane fluctuate in time with

long period. For various densities betweenp =5/12 and 3/4, Qt

Qat and Qrt widely cover on the diagram.

4. Flow and Configuration of Cars on the Two-Lane Road and Lane
change

Now let us discuss the configuration of the cars in the points on
the sub-blanches for a case of K=24. At the point D in Fig.2(b),
which is denoted by Doo hereafter, the density p is 1/3, and the
regular configuration is ...100100100... on A-lane, ...100100100... on
B-lane, and then A+B=...200200200... on the total lane. At m-th
point Dmo from Doo on the branch AD, m blocks of “100100” on the
A-lane are exéhanged for m blocks of “101010” and then the
configuration at the center point B (Dso) of AD is ...101010101010...
on whole area of A-lane, ...100100100100.. on B-lane, and
...201110201110... on the total lane. At the point A denoted by Dso,

0 =1/2, ...10101010... on both lane and ..20202020... on the total

lane. As moving from B to F, the blocks of “100” on the B-lane are

replaced by “101” and the configuration at the point F (D4s) becomes

A= 101010.. B=..101101.. and A+B=...202111... on the total lane.

11



At further points over F to C, the block “101” is exchanged for “111”
and the configuration goes to A=...101010..., B=...111111... and

A+B=...212121... at the point C (D4 14). Generally, the
configuration of the point Dmn on the two-dimensional lattice in the
parallelogram BDGF can be expressed by exchanging m blocks of
“100100" for “101010” on the A-lane and n blocks of “100” for “”101”
on the B-lane from the basic configuration Doo. Of course, because
the two lanes are symmetric, the role of A and B lane can be
exchanged due to initial configurations. From this point of view,
we can understand that this kind of points cannot exist out of the
parallelogram BDGF. The configurations described here are most
regular examples and in general various other configurations made
by exchange or shift of the blocks between A- and B-lanes, which

correspond also to the same flow point. For example, another

configuration ..111111..., composed of ...101010.. and
...010101...shifted by one site, corresponds to point A (Dso) also.

The configuration at the points near D on the branch AD can be
1imagined as that there exist some clusters of “101010” in the
configuration of ...100100.... The block 101010 is unstable, because
if a “1” in “101010” block is perturbed to be “110010” and then the
corresponding spot in the diagram relaxes to a lower-flow point at
Ithe same densityl32]. We can imagine the “101010” a compact
train of cars moving on expressway with high speed. Controlling
this unstable state is really planned as the platoon traveling in
intelligent transport systems (I”T'S) to get high traffic flow on
expressway.

In the points on the branches inside the parallelogram BDGF

12



and on the blanch BC, there are many configurations of “21” or “12”
in the total lane. The configuration indicates that there is a car
that can neither advance on its lane nor go to another lane, 1.e. the
car only stays at its site. Lane-change process is suppressed and a
local congested part arises there. Cars in this state advance on
own lane with stop-and-go traffic, which does not globally spread
but 1s local and temporal: Car stops at “21” or “12” and then goes
out of 1it. The stopped car becomes a cause for formation of new
“21” or “12” in next time-step and then the number of “21” or “12” is
conserved in time and the flow keeps constant. The number of “21”
and “12" is decided at initial distribution of cars. Many kinds of
initial distributions make two-dimensio.nal lattice of local congested
states in this area. In conclusion, cars on these points stop and 20
on their own lane. If once “22” is broken out from “21” or “12” on
the lane by some perturbation, the global stop-and go- flow occurs
and the flow goes down the global jamming branch DE. Thus the
traffic flow in the local congested state is larger than that in the
global jamming state.

As mentioned previously, there are many points fluctuating

around the two-dimensional lattice or the straight lines. This
fluctuation is caused by the lane-change process. A local congestion
on A-lane induces a lane-change to B-lane at this case. This process
induces new congestion on B-lane, which induces the next
lane-change to A-lane. The ‘concatenate lane-change makes large

fluctuation on both average flow Qat and Qgt. The sequence of

lane-changes continues for long time without coming to a stable

flow. Now, we introduce a new quantity C which indicates

13



lane-change rate of a car. it 18 defined as follolws,
C=1/TNZ X {min(1— A% t, 1—A;t, B*j-1t, B;t)

+ min(A*t, Ajeit, 1—B*t, 1— Bij+it) ., (14)
where the first and second terms in the braces indicate numbers of
cars changing from B to A lane and from A to B lane, respectively,
which appear in eq.(3). They are summarized for all sites
(j=1,2...K) during time T and averaged. C is lane-change rate of a
car 1n unit time. Figure 6 shows variation of C for various car

densities at K=240. It can be naturally understood that C becomes

zero at both low- and high-critical densities (o =5/12 and 3/4) and

has a peak between them (p = Z2/3). 'I'he value 5/1Z ot low-critical
density is given by the average of 1/2 and 1/3. The local pattern of
“101010"+7100100” on both lanes is frequently observed in the
simulation for the fluctuation flow. Though we can’t explain the
configuration and dynamics of the fluctuating state yet, the

densities p A=1/2 and p 8=1/3 may be critical densities, to continue

lane-change in low density limit. For the high-critical density, o

=3/4=(1+1/2)/2, which may come from the observed pattern “111111”

+ 7101010”.

5. Concluding Discussions
In this paper, a two-lane traffic model equivalent to EBCA1

model 18 studied. We have obtained evolution equations for each
lane. In the flow-density diagram, we found many metastable
sub-branches besides the main branches. A kind of flow on the
sub-branches is stable and cars advfanc_e by local and temporal

stop-and go-flow on own lane with no lane-change, though the flow

14



18 congested locally. This local congested state may be related to

convectively unstable state observed in optimal velocity model with

open boundary condition[38]. Second kind of flow is the states
oscillating with short period. The third kind of flow is local
congested states with frequent lane-change. The flow fluctuates in
time and varies around the branches on the diagram. Effect of
lane-change on flow of each lane is remarkable at magnitude and
the periodic time of fluctuation is chaotically very long.

There are many two-lane traffic models including more realistic

lane-change models and considering asymmetric roles of two
lanes{21-24]. Compared with them, EBCA1 will be too simple model.
Nevertheless, it can provide many kinds of metastable states. The
fact may suggest that slow-start, high-velocity and multiple-lane
models are essential processes to bring metastable states into
existence 1n the traffic model. It is worth notice that EBCA1 is

perfectly deterministic, not stochastic. For all that, the EBCA1l

shows chaotic fluctuating states.
It 1s known that the average velocities of cars in traffic flow
can be nearly synchronized in different lanes of the expressway[33].

Experimental investigations by Kerner and Rehborn{34-37] show
that in synchronized traffic flow cars could move with nearly the
same velocities in different lanes near on-ramps. They say that
there are three phases: free flow, synchronized flow and wide
moving jam, in the traffic flow. The jams emerge in free flow

£

through a sequence of two phase transitions: free flow —
synchronized flow — jams”. They moreover say that the

synchronized flow can further be characterized into three different

15
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kinds of phases{35]: 1)both the velocity and the flow are stationary,
2)the velocity is only stationary and the flow is not stationary and
3)both the velocity and the flow abruptly change. Thus the
synchronized phase seems to be a key word to clarify the traffic
flow, though it has not been fully established. M-any metastable
states have been found in EBCA1 model and it has been showed that

the stable flow in linear branches has constant velocity and flow.
This flow may correspond to above type 1) synchronized flow. The
type 2) and 3) synchronized flows may be found in the present
fluctuating flows. Especially, we think that type 3) has deep
relation with our fluctuating flow. In further studies, the local
and dynamical configuration of cars in those flows should be

studied and behaviors of individual car should be clarified in

connection with the synchronized states.
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Figure Captions

Fig.1 Two-lane road and an example of moving of cars. Figures a)
and b) show procedure a) and b), respectively.

Fig.2. (a) Density-flow diagram for the total average flow Qt at L=2
and K=24. (b): Density-flow diagram for the stable flow. (c¢):
Density-flow diagram for the fluctuating flow.

Fig.3 Time variation of the flow Qat of A-lane and Qgt of B-lane in
the fluctuating flow and the total flow Qt.

Fig.4 (a) Period of fluctuation of the total flow Qt (b) Power
spectra of fluctuation of Qt. (¢) Power spectra of fluctuation of Qat .

Fig.5 Tracks of fluctuating flows Qat, Qst at o =0.5396 plotted on

the density-flow diagram.

Fig.6 Lane change rate for a car in the fluctuating flow at various

densities.
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