Box and ball system as a realization of ultradiscrete nonautonomous KP equation

T. Tokihiroa, D. Takahashib and J. Matsukidairac

aGraduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

bDepartment of Mathematical Sciences, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

cDepartment of Applied Mathematics and Informatics, Ryukoku University, Seta, Ohtsu 520-2100, Japan

October 1, 1999

Abstract

Cellular automata, which are realized by dynamics of several kinds of balls in an infinite array of boxes, are investigated. They show soliton patterns even in the case when each box has arbitrary capacity. The analytical expression for the soliton patterns are obtained using ultradiscretization of the nonautonomous discrete KP equation.

Keywords: cellular automaton; ultra-discretization; nonautonomous KP equation

PACS: 02.30.J, 02.30, 43.25.Rq

1 Introduction

Cellular automata (CAs) serve as simple models for complex phenomena such as pattern formation, chaos and fractals.[1] They also exhibit coherent structures as is seen in the game of life.[2] Patterns which behave like solitons are also observed and discussed in several CA systems.[3, 4, 5] About a decade ago, one of the authors (D.T.) and Satsuma proposed a 1(space)+1(time) dimensional CA in which all patterns look like solitons analogous to that of the soliton solutions in nonlinear partial differential equations.[6]
The CA takes values on either zero or one. The rule to determine the value of the CA at position \(n\) and time \(t + 1\), \(x_{n}^{t+1}\), is given as:

\[
x_{n}^{t+1} = \begin{cases}
1 & \text{if } x_{n}^{t} = 0 \text{ and } \sum_{n'=\infty}^{n-1} x_{n'}^{t} > \sum_{n'=\infty}^{n-1} x_{n'}^{t+1} \\
0 & \text{otherwise}
\end{cases}
\]

Here we assume that the number of '1's is finite, that is, we take \(\lim_{|n| \to \infty} x_{n}^{t} = 0\) as the boundary condition. An example of soliton patterns is shown in Fig. 1.

\[
t = 0 \quad \ldots 11000100000000\ldots \\
t = 1 \quad \ldots 00110010000000\ldots \\
t = 2 \quad \ldots 00001101000000\ldots \\
t = 3 \quad \ldots 00000010110000\ldots \\
t = 4 \quad \ldots 00000001001100\ldots \\
t = 5 \quad \ldots 00000000100011\ldots \\
\]

Figure 1: Two soliton interactions of the soliton CA.

Soon after this proposal of the CA, D.T. extended it to so called box and ball systems (BBSs).\[7\] The idea is to consider \(x_{n}^{t}\) as the number of balls in the \(n\)th box at time \(t\). Then the CA is represented as a system with an infinite array of boxes each of which is either empty or contains a ball. The evolution rule from \(t\) to \(t + 1\) is described as:

1. Move every ball only once.
2. Move the leftmost ball to the nearest right empty box.
3. Move the leftmost ball among the rest to its nearest right empty box.
4. Repeat this procedure until all of the balls are moved.

We can easily see that this rule is equivalent to that of the original CA. Figure 2 shows the BBS corresponding to Fig.1.

With this interpretation, we can introduce two extra freedoms: capacity of boxes and species of the ball. We suppose that the capacity of the box is \(L\) and there are \(M\) kinds of balls which are indexed by integers \(1, 2, \cdots, M\). Then, the natural rule from \(t\) to \(t + 1\) for the dynamics of the BBS would be

1. Move every ball only once.
2. Move the leftmost ball with index 1 to the nearest right box with space, \(i.e.,\) to the nearest right box which contains less than \(L\) balls.
\[
\begin{align*}
\text{t} = 0 & \quad \cdots \bigcirc \cdots \\
\text{t} = 1 & \quad \cdots \bigcirc \cdots \\
\text{t} = 2 & \quad \cdots \bigcirc \cdots \\
\text{t} = 3 & \quad \cdots \bigcirc \cdots \\
\text{t} = 4 & \quad \cdots \bigcirc \cdots \\
\text{t} = 5 & \quad \cdots \bigcirc \cdots \\
\end{align*}
\]

Figure 2: BBS corresponds to Fig.1.

3 Move the leftmost ball with index 1 among the rest to its nearest right box with space.

4 Repeat this procedure until all of the balls with index 1 are moved.

5 Do the same procedure 2–4 for the balls with index 2.

6 Repeat this procedure successively until all of the balls are moved.

Surprisingly, the patterns of the BBSs also behave like solitons.[7] We show an example in Fig 3.

Several years ago, the authors and Satsuma found a direct link between the BBS (1) and the soliton equations [9]. They showed a method by which CAs are obtained from continuous equations. This method is based on limiting procedures and called ultra-discretization (UD)[10, 11]. In the present article, we will investigate the BBS, allowing that the capacities of the boxes differ in position, in terms of UD of the nonautonomous discrete KP equation (NDKP eq.) [12, 13]. The expressions of the soliton patterns are given through UD of the soliton solutions of NDKP eq..

2 Nonautonomous discrete KP equation

In the theory of KP hierarchy (Sato theory), the generating formula for a series of equations of the hierarchy is given by [14, 15]

\[
\text{Res}_{\lambda = \infty} \left[\tau(t + \epsilon(1/\lambda)) \tau(t' - \epsilon(1/\lambda)) e^{\xi(t-t', \lambda)} \right] = 0,
\]

(2)

where \(t = (t_1, t_2, t_3, \cdots) \) denotes an infinite number of independent variables, \(\epsilon(1/\lambda) = (1/\lambda, 1/(2\lambda^2), 1/(3\lambda^3), \cdots) \), and \(\xi(t, \lambda) = \sum_{j=1}^{\infty} t_j \lambda^j \). One of the main results in the Sato theory is that a function \(\tau \) satisfies Eq. (2) if and only if it corresponds to a \(GL_{\infty} \)-orbit of the fermion vacuum (a highest weight vector in basic representation of \(GL_{\infty} \)).
Figure 3: Two soliton interaction of an extended BBS. \(L = 2 \) and \(M = 3 \).

Its coordinates are given through boson-fermion correspondence, and we can obtain the explicit expression of function \(\tau \). From Eq. (2), we have the so called Fay identity for \(\tau \):

\[
(b - c)\tau(t - \epsilon(1/a))\tau(t - \epsilon(1/b) - \epsilon(1/c)) + (c - a)\tau(t - \epsilon(1/b))\tau(t - \epsilon(1/c)) - \epsilon(1/a))
\]
\[
+ (a - b)\tau(t - \epsilon(1/c))\tau(t - \epsilon(1/a) - \epsilon(1/b)) = 0.
\]

(3)

Noticing that this identity resembles the discrete analogue of generalized Toda equation proposed by Hirota[16], Miwa found transformations which map the generating formula to discrete bilinear equations.[17] For example, by setting \(t = \ell \epsilon(1/a) + m \epsilon(1/b) + n \epsilon(1/c) \) and \(\tau(\ell, m, n) \equiv \tau(t) \), we have the discrete KP equation (Hirota-Miwa equation), which produces many important discrete integrable nonlinear equations[16]. The NDKP eq. is obtained from the Fay identity by setting

\[
t = \sum_{\ell} \epsilon(1/a_{\ell}) + \sum_{m} \epsilon(1/b_{m}) + \sum_{n} \epsilon(1/c_{n}),
\]

where

\[
\sum_{k} \equiv \begin{cases}
\sum_{k'}=1 & k \geq 1 \\
0 & k = 0 \\
-\sum_{k'=k+1} & k \leq -1.
\end{cases}
\]
Then, \(\tau(\ell, m, n) \equiv \tau(t) \) satisfies
\[
(b_m - c_n) \tau(\ell - 1, m, n) \tau(\ell, m - 1, n - 1) + (c_n - a_\ell) \tau(\ell, m - 1, n) \tau(\ell - 1, m, n - 1) \\
+ (a_\ell - b_m) \tau(\ell, m, n - 1) \tau(\ell - 1, m - 1, n) = 0.
\]
(4)

This equation is the NDKP equation. Taking \(a_\ell = 0 \), \(b_m = 1 \), \(c_n = 1 + \delta_n \), Eq. (4) turns into
\[
-\delta_n \tau(\ell - 1, m, n) \tau(\ell, m - 1, n - 1) + (1 + \delta_n) \tau(\ell, m - 1, n) \tau(\ell - 1, m, n - 1) \\
-\tau(\ell, m, n - 1) \tau(\ell - 1, m - 1, n) = 0.
\]
(5)

The \(N \) soliton solution to Eq. (5) is given by [12, 18]
\[
\tau(t) = \langle \text{vac}|g(t)|\text{vac} \rangle,
\]
(6)
\[
g(t) = \prod_{k=1}^{N} (1 + \alpha_k \psi(p_k, t) \psi^*(q_k, t)),
\]
(7)
where \(\alpha_k \) (\(k = 1, 2, \cdots, N \)) are complex constants,
\[
\psi(p, t) = p^{-\ell}(1 - p)^{-m} \prod_{n'=1}^{n}(1 + \delta_{n'} - p)^{-1} \psi(p),
\]
\[
\psi^*(q, t) = q^{\ell}(1 - q)^{m} \prod_{n'=1}^{n}(1 + \delta_{n'} - q) \psi^*(q),
\]
with
\[
\prod_{n'=1}^{n} X_{n'} \equiv \begin{cases}
\prod_{n'=1}^{n} X_{n'} & 1 \leq n \\
1 & n = 0 \\
\prod_{n'=n+1}^{0} X_{n'}^{-1} & n \leq -1,
\end{cases}
\]
and \(\psi(p) \), \(\psi^*(q) \) are fermionic field operators which satisfy
\[
\langle \text{vac}|\psi(p_1) \psi(p_2) \cdots \psi(p_r) \psi^*(q_1) \psi^*(q_r) \cdots \psi^*(q_1)|\text{vac} \rangle \\
= \det \left(\frac{1}{p_i - q_j} \right)_{1 \leq i, j \leq r}.
\]

In order to relate the NDKP eq. to BBS, we impose a constraint on \(\tau(\ell, m, n) \):
\[
\tau(\ell, m, n) = \tau(\ell - M, m - 1, n).
\]
(8)

Denoting \(\sigma^n_s \equiv \tau(s - 1, m = 0, n) \), Eq. (5) turns into
\[
(1 + \delta_n) \sigma_{n-1}^{s+1} \sigma_{s+1}^n - \sigma_{n-1}^n \sigma_{s+1}^n - \delta_n \sigma_{s+1}^n \sigma_{n-1}^n = 0.
\]
(9)

The \(N \) soliton solution (7) is also a solution to Eq. (9) if it holds that
\[
\left(\frac{q_k}{p_k} \right)^{M} \left(\frac{1 - q_k}{1 - p_k} \right) = 1,
\]
(10)
for \(k = 1, 2, \cdots, N \). It should be noted that, for a given \(p_k \), there are \(M \) \(q_k \)'s which satisfy Eq. (10) and \(q_k \neq p_k \). We use this fact to construct explicit solutions to BBS.
3 BBS as UD limit of NDKP equation

We consider an infinite array of boxes in a line. The capacity of the nth ($-\infty < n < \infty$) box is denoted by θ_n, which is a positive integer. We suppose that there are M kinds of balls distinguishable by an integer index j ($1 \leq j \leq M$). The rule for time evolution of this BBS is the same as that given in Sec.1.

![Diagram](image)

Figure 4: Two soliton interaction of BBS with spatial dependence of box capacity.

If $u_{n,j}^t$ denotes the number of balls with index j at time t in the nth box, the evolution rule given in the introduction is described as follows.

$$u_{n,j}^t = \min\left[\sum_{n'=-\infty}^{n-1} u_{n',j}^{t-1} - \sum_{n'=-\infty}^{n-1} u_{n',j}^t, \theta_n - \sum_{j'=1}^{j-1} u_{n,j'}^t - \sum_{j'=j}^{M} u_{n,j'}^t\right]. \quad (11)$$

We introduce a dependent variable $Y_n^s (s \equiv Mt + j)$ as

$$Y_n^s \equiv Y_n^{M_{t+j}} := \sum_{n'=\infty}^{\infty} \left(\sum_{j'=j}^{M} u_{n',j'}^t + \sum_{t'=t+1}^{\infty} \sum_{j'=1}^{M} u_{n',j'}^t\right).$$

From Eq. (11) and noticing the relation:

$$u_{n,j}^t = -Y_{n}^{s+1} + Y_{n}^{s} + Y_{n-1}^{s+1} - Y_{n-1}^{s} \mid s = Mt + j,$$

we have

$$Y_{n}^{s+1} + Y_{n-1}^{s-M} = \max\{Y_{n}^{s} + Y_{n-1}^{s+1-M}, Y_{n-1}^{s+1} + Y_{n}^{s-M} - \theta_n\}. \quad (12)$$

The form of Eq. (12) seems to suggest some connections of the BBS with the NDKP eq. (9). In fact, Eq. (12) is obtained from Eq. (9) by the limiting procedure: UD. To
see this, we introduce a small positive parameter \(\varepsilon \). We put \(\delta_n = \exp[-\theta_n/\varepsilon] \) in Eq. (9). Then a solution to Eq. (9) generically depends on the parameter \(\varepsilon \): \(\sigma^n_\varepsilon \equiv \sigma^n_\varepsilon(\varepsilon) \). Noticing the identity

\[
\lim_{\varepsilon \to +0} \varepsilon \log \left(\exp[A/\varepsilon] + \exp[B/\varepsilon] \right) = \max[A, B], \quad \text{for } A, B \in \mathbb{R},
\]

if the limit \(\lim_{\varepsilon \to +0} \varepsilon \log \sigma^n_\varepsilon(\varepsilon) \equiv \bar{Y}^n_\varepsilon \) exists, it is obvious that \(\bar{Y}^n_\varepsilon = \bar{Y}^n_\varepsilon \) satisfies Eq. (12). Thus, once we find one parameter (\(\varepsilon \)) family of solutions \(\sigma^n_\varepsilon(\varepsilon) \), we can obtain a solution to the BBS. UD is this kind of method by which we can obtain a CA and its solutions at the same time through limiting procedures. Since the NDKP equation is essentially equivalent to the generating formula of KP hierarchy, we may regard the BBSs as a realization of ultra-discrete limit of KP hierarchy.

4 \textbf{N soliton solutions to the BBS}

In this section, we construct explicit soliton solutions to the BBS with the aid of solutions to the NDKP equation.

First we consider one soliton solution. The one soliton solution to the BBS is shown to have the form:

\[
\bar{Y}^n_{M+1} = \max \left[0, \bar{K}_0 - tL - \sum_{i=1}^{j} \ell_i + \sum_{n'} \min[\theta_{n'} , L] \right],
\]

where \(L \) is the length of soliton which corresponds to the number of all balls in the soliton, \(\bar{K}_0 \) is an integer which is related to the phase of soliton, and \(\ell_i \) (\(i = 1, 2, \cdots, M \)) are the non-negative integers which correspond to the number of \(i \)th balls in the soliton. Thus it holds that \(\sum_{i=1}^{M} \ell_i = L \). We shall give some details of its derivation, because multi-soliton solutions are obtained with similar arguments. To obtain (13), we take \(g(t) \) in (7) as

\[
g(t) = \prod_{\ell=0}^{M-1} \left(1 + c_{\ell}(q_{\ell}) \psi(p, t) \psi^*(q_{\ell}, t) \right)
\]

\[
= 1 + \psi(p, t) \phi^*(p, t),
\]

\[
\phi^*(p, t) \equiv \sum_{\ell=0}^{M-1} c_{\ell}(q_{\ell}) \psi^*(q_{\ell}, t),
\]

where \(q_{\ell} \) (\(\ell = 0, 1, \cdots, M - 1 \)) are the roots of algebraic equation :

\[
\frac{x^M(1-x) - p^M(1-p)}{x - p} = 0, \quad (x \neq p)
\]

for a given real number \(p \) (\(M/(M+1) < p < 1 \)), and \(c_{\ell}(p) \) (\(0 \leq \ell \leq M - 1 \)) are complex coefficients which will be determined later. Since Eq. (17) has one real positive root except
for p, we assume that q_0 is positive and we put $\gamma = q_0/p$. Then p and q_0 satisfy
\begin{equation}
 p = \frac{1 - \gamma^M}{1 - \gamma^{M+1}}, \quad (18)
\end{equation}
\begin{equation}
 1 - p = \gamma^M \left(\frac{1 - \gamma}{1 - \gamma^{M+1}} \right), \quad (19)
\end{equation}
\begin{equation}
 q_0 = \gamma \left(\frac{1 - \gamma^M}{1 - \gamma^{M+1}} \right). \quad (20)
\end{equation}

The τ-function $\sigma^n(= \tau(\ell))$ is given from Eq. (6) as
\begin{equation}
 \sigma^n = 1 + \sum_{\ell=0}^{M-1} c_\ell(p) \frac{1}{p - q_\ell} \left(\frac{q_\ell}{p} \right)^n \prod_{\ell'} \left(\frac{1 - q_\ell/(1 + \delta_{\ell \ell'})}{1 - p/(1 + \delta_{\ell \ell'})} \right). \quad (21)
\end{equation}

We introduce a small positive parameter ε and put $\gamma = \exp[-L/(M\varepsilon)]$ with an integer L. We also put
\begin{equation}
 \tilde{c}_\ell(p) \equiv \frac{c_\ell(p)}{p - q_\ell} (1 - q_\ell)^{T_0} \prod_{\ell'} (1 - q_\ell/(1 + \delta_{\ell \ell'})), \quad (22)
\end{equation}
\begin{equation}
 \chi_p(s) \equiv \sum_{\ell=0}^{M-1} \tilde{c}_\ell(p) \left(\frac{q_\ell}{p} \right)^s, \quad (23)
\end{equation}

where $T_0 = T_0(\varepsilon)$ and $N_0 = N_0(\varepsilon)$ are positive integers which satisfy $T_0 \simeq N_0 \simeq 1/\varepsilon$. Hence, $\lim_{\varepsilon \to +0} T_0 = \lim_{\varepsilon \to +0} N_0 = +\infty$.

We determine $c_\ell(p) (\ell = 0, 1, 2, \cdots, M - 1)$ by the following assumption for $\chi_p(j)$ ($j = 0, 1, 2, \cdots, M - 1$):
\begin{equation}
 \begin{align*}
 \chi_p(0) & = \chi_0 \\
 \chi_p(1) & = N_1 y_1 \chi_p(0) \\
 \chi_p(2) & = N_2 y_2 \chi_p(1) \\
 \cdots & \\
 \chi_p(M - 1) & = N_{M-1} y_{M-1} \chi_p(M - 2). \quad (24)
 \end{align*}
\end{equation}

Here χ_0 is a positive number which is related to the initial phase of soliton, $y = \exp[-1/\varepsilon]$, ℓ_j and $N_j = N_j(\varepsilon) (j = 1, 2, \cdots, M - 1)$ are non-negative integers and positive numbers respectively. They are also supposed to satisfy
\begin{equation}
 \begin{align*}
 \ell_M & \equiv L - \sum_{j=1}^{M-1} \ell_j \geq 0, \\
 \lim_{\varepsilon \to 0} \varepsilon \log N_j(\varepsilon) & = 0, \\
 N_j y_{\ell_j} & \leq \varepsilon^{N^*}, \quad (25)
 \end{align*}
\end{equation}

for a sufficiently large positive integer N^*. From (24) and (26), $c_\ell(p) (\ell = 0, 1, \cdots, M - 1)$
are uniquely determined by the equation:

\[
\begin{pmatrix}
1 & 1 & \cdots & 1 \\
q_0 & q_1 & \cdots & q_{M-1} \\
q_0^2 & q_1^2 & \cdots & q_{M-1}^2 \\
\vdots & \vdots & \ddots & \vdots \\
q_0^{M-1} & q_1^{M-1} & \cdots & q_{M-1}^{M-1}
\end{pmatrix}
\begin{pmatrix}
\tilde{c}_0(p) \\
\tilde{c}_1(p) \\
\tilde{c}_2(p) \\
\vdots \\
\tilde{c}_{M-1}(p)
\end{pmatrix}
=
\begin{pmatrix}
\chi_p(0) \\
p\chi_p(1) \\
p^2\chi_p(2) \\
\vdots \\
p^{M-1}\chi_p(M-1)
\end{pmatrix},
\]
(26)

Note that the determinant of the \(M \times M \) matrix in the left hand side of (26) is the Vandermonde determinant: \(\prod_{1 \leq i < j \leq M-1} (q_j - q_i) \neq 0 \).

Since

\[
\chi_p(s + M) = \sum_{\ell=0}^{M-1} \tilde{c}_\ell(p) \left(\frac{q_\ell}{p} \right)^{s+M}
\]

\[
= \sum_{\ell=0}^{M-1} \tilde{c}_\ell(p) \left(\frac{q_\ell}{p} \right)^{s} \left(\frac{1 - p}{1 - q_\ell} \right)
\]

\[
= (1 - p) \sum_{i=0}^{\infty} p^i \sum_{\ell=0}^{M-1} \tilde{c}_\ell(p) \left(\frac{q_\ell}{p} \right)^{s+i}
\]

\[
= (1 - p) \sum_{i=0}^{\infty} p^i \chi_p(s + i),
\]

we have

\[
\chi_p(s + M) = \sum_{i=0}^{M-1} \left(\sum_{\ell=0}^{\ell-1} (1 - p)^{\ell+1} p^\ell g_\ell(i) \right) p^i \chi_p(s + i),
\]
(27)

where \(g_0(i) = 1 \), \(g_1(i) = i + 1 \) and

\[
g_\ell(i) = \sum_{k_1=(\ell-1)M}^{k_1=M} \cdots \sum_{k_{\ell-1}=0}^{k_{\ell-1}=1} (i + 1) \frac{M}{\ell!} \prod_{j=1}^{\ell-1} (\ell M + i + j + 1),
\]

for \(\ell \geq 2 \). The ratio \(g_{\ell+1}(i) / g_\ell(i) (\ell \geq 1) \) is calculated as

\[
\frac{g_{\ell+1}(i)}{g_\ell(i)} = \frac{(\ell + 1)(M + 1) + i}{\ell + 1} \prod_{k=1}^{\ell-1} \left(1 + \frac{M}{\ell M + i + k + 1} \right)
\]

\[
< \left(M + 1 \right) \left(1 + \frac{1}{\ell} \right)^\ell
\]

\[
< \left(M + 1 \right) e.
\]

Hence, if it holds that \((1 - p)p^M < (M + 1)^{-1} e^{-1}\), we obtain

\[
0 < \chi_p(s + M) \leq (1 - p) \sum_{i=0}^{M-1} \left(1 + (i + 1) \frac{(1 - p)p^M}{1 - (1 - p)p^M(M + 1) e} \right) \chi_p(s + i).
\]
(28)
Thus, from (28) and (26), we find that
\[
\chi_p(i) \geq \varepsilon^{-N^*} \chi_p(i + 1) \quad \text{for all } i, \\
\chi_p(i) \geq C \exp \left[\frac{L}{\varepsilon} \right] \chi_p(i + M) \quad \text{for all } i \text{ and } \exists C > 0.
\] (29)

Now we evaluate the τ functions σ_n^* and take its UD limit. From Eq. (21), we have
\[
\sigma_n^{M+t+j} = 1 + \sum_{j=0}^{M-1} \tilde{c}_j(p) \left(\frac{q_j}{p} \right)^{M+t+j} \left(1 - q_j \right)^{-T_0} \prod_{n'=n+1}^{n} \left(1 - \frac{p}{1 + \delta_{n'}} \right)^{-1} \prod_{n'\geq n+1}^{N_0} \left(1 - \frac{q_j}{1 + \delta_{n'}} \right)^{-1}
= 1 + \sum_{j=0}^{M-1} \tilde{c}_j(p) \left(\frac{q_j}{p} \right)^{j} \left(\frac{1 - p}{1 - q_j} \right)^t \left(1 - q_j \right)^{-T_0} \prod_{n'=n+1}^{n} \left(1 - \frac{p}{1 + \delta_{n'}} \right)^{-1} \prod_{n'\geq n+1}^{N_0} \left(1 - \frac{q_j}{1 + \delta_{n'}} \right)^{-1}.
\] (30)

For a moment, we assume that n and t are in the region: $|n| \leq N_0$ and $|t| \leq T_0$. Noticing that
\[
(1 - q_j)^{-T_0-t} \prod_{n'=n+1}^{N_0} \left(1 - \frac{q_j}{1 + \delta_{n'}} \right)^{-1} = 1 + \left(T_0 + t + \sum_{n'=n+1}^{N_0} \left(\frac{1}{1 + \delta_{n'}} \right) \right) q_j + \cdots
= 1 + a_1 \left(\frac{q_j}{p} \right) + a_2 \left(\frac{q_j}{p} \right)^2 + a_3 \left(\frac{q_j}{p} \right)^3 + \cdots,
\]
we get
\[
\sigma_n^{M+t+j} = 1 + (1 - p)^t \prod_{n'=n+1}^{n} \left(1 - \frac{p}{1 + \delta_{n'}} \right)^{-1} \sum_{i=0}^{\infty} a_i \chi_p(j + i),
\] (31)
where $a_0 = 1$ and $a_{j+1}/a_j \sim \varepsilon^{-1}$. From (29), we have $0 < \sum_{i=1}^{\infty} a_i \chi_p(j + i) < \chi_p(j)$ for sufficiently small ε. Putting $\chi_0 = \exp \left[K_0/\varepsilon \right]$ and using the relations:
\[
\lim_{\varepsilon \to +0} \varepsilon \log(1 - p) = -L,
\]
and
\[
\lim_{\varepsilon \to +0} \varepsilon \log \left(1 - \frac{p}{1 + \delta_{n'}} \right)^{-1} = \min \left[L, \theta_n \right],
\]
we obtain
\[
\lim_{\varepsilon \to +0} \varepsilon \log \sigma_n^{M+t+j} = \max \left[0, K_0 - tL - \sum_{i=1}^{j} \ell_i + \sum_{n'} \min \left[\theta_{n'}, L \right] \right].
\] (32)

Since $\lim_{\varepsilon \to +0} N_0(\varepsilon) = \lim_{\varepsilon \to +0} T_0(\varepsilon) = +\infty$, these results are valid for any finite n and t. Thus we have shown that (13) is a solution to Eq. (12).

It may be interesting to see how $\varepsilon \log \sigma_n^*(\varepsilon) \equiv \tilde{Y}_n^s(\varepsilon)$ approaches to the right hand side of (32). We define $\tilde{u}_n^s(\varepsilon) := \tilde{Y}_{n+1}^s + \tilde{Y}_n^s + \tilde{Y}_{n-1}^s - \tilde{Y}_{n-1}^s$. By definition, we have $\tilde{u}_n^{M+t+j}(+0) = u_{n,j}^s$. Figure 5 shows $\tilde{u}_n^s(\varepsilon)$ given from (31) for various values of ε. They show fairly localizing behaviors and do not look like typical soliton solutions in $1 + 1$
dimension. In fact, as is seen from the construction (cfr. (14)), the one soliton solutions of this system should be regarded as degenerate M soliton solutions.

Furthermore, in the limit $p \to 1 - 0$, we have $q_\ell \to \gamma \exp \left[2\pi \sqrt{-1\ell/M} \right]$ and $\chi_\ell (\ell)$ becomes ℓth Fourier component of a function $\Sigma_n(s) = \gamma^{-1} \sigma_n^{M+\ell}$ which is a periodic function with respect to $s \equiv Mt + j$ with period M. Hence, in the UD limit, we can construct any shape of periodic function with period M by suitably choosing $\chi_\ell(j)(0 \leq j \leq M - 1)$ in (24), though it is no longer expressed as a solution to BBS. For finite ε, this type of solutions exhibit soliton-like behaviors with complicated inner structures.

(a) $y \equiv \exp[-1/\varepsilon] = 1.0$

(b) $y = 0.01$

(c) $y = +0(\varepsilon = +0)$

(d) Corresponding time evolution of BBS

Figure 5: One soliton solution to Eq. (12).

We turn to the construction of multi-soliton solutions of BBS. From the above arguments, we see that the field operators $\psi(p)$ and $\phi^*(p)$ are essentially determined by L, ℓ_j ($j = 1, 2, \cdots, M$) and K_0. Therefore we denote these operators by

$$
\psi(p) = \psi(L; \varepsilon), \quad \phi^*(p) = \phi^*(L; \{\ell_j\}; K_0; \varepsilon).
$$

For two soliton solutions, we take

$$
g(t) = (1 + \psi(p_1, t)\phi^*(p_1, t))(1 + \psi(p_2, t)\phi^*(p_2, t)),
$$

where

$$
\psi(p_i) = \psi(L^{(i)}; \varepsilon), \quad \phi^*(p_i) = \phi^*(L^{(i)}; \{\ell_j^{(i)}\}; K_0^{(i)}; \varepsilon) \quad (i = 1, 2).
$$

We also assume $L^{(1)} \geq L^{(2)}$ and $\ell_j^{(1)} \geq \ell_j^{(2)}$ ($j = 1, 2, \cdots, M$). As we shall see below, the latter condition is turned out to be natural constraint for soliton solutions. Using the similar notations as above, we have

$$
\sigma_n^{M+\ell} = \langle \text{vac}|(1 + \psi(p_1, t)\phi^*(p_1, t))(1 + \psi(p_2, t)\phi^*(p_2, t))|\text{vac}\rangle
$$

$$
\quad = 1 + \langle \text{vac}|\psi(p_1, t)\phi^*(p_1, t)|\text{vac}\rangle + \langle \text{vac}|\psi(p_2, t)\phi^*(p_2, t)|\text{vac}\rangle
$$

$$
\quad + \langle \text{vac}|\psi(p_1, t)\phi^*(p_1, t)\psi(p_2, t)\phi^*(p_2, t)|\text{vac}\rangle.
$$

\text{(36)}
The second and third terms are calculated in the same way as above. The fourth term is calculated as

\[
\langle \text{vac}| \psi(p_1, t) \phi^*(p_1, t) \psi(p_2, t) \phi^*(p_2, t) | \text{vac}\rangle
\]

\[
= \sum_{j=0}^{M-1} \sum_{j'=-1}^{M-1} \bar{c}_j(p_1) \bar{c}_{j'}(p_2) \left(\frac{(p_1 - p_2)(q_j^{(2)} - q_{j'}^{(1)})}{(p_1 - q_{j'}^{(2)})(p_2 - q_j^{(1)})} \right) \\
\times \prod_{i=1,2} \left(\frac{q_j^{(i)}}{p_i} \right)^{j} \left(\frac{1 - p_i}{1 - q_j^{(i)}} \right) \frac{1}{\Gamma} \left((1 - q_j^{(i)}) - T_0 \right)^{-1} \\
\times \prod_{n'=n+1}^{n} \frac{1 - p_i}{1 + \delta_{n'}} \left(\frac{1 - q_j^{(i)}}{1 + \delta_{n'}} \right)^{-1}. \quad (37)
\]

We define \(\chi_{p_1}(s) \) by

\[
\chi_{p_1}(s) = \sum_{l=0}^{M-1} \bar{c}_l(p_1) \left(\frac{q_l^{(i)}}{p_l} \right)^{s} \quad (i = 1, 2), \quad (38)
\]

and suppose

\[
\chi_{p_1}(0) = \chi_{p_1}^{(0)} \\
\chi_{p_1}(1) = N_1^{(i)} \quad \chi_{p_1}(0) \\
\chi_{p_1}(2) = N_2^{(i)} \quad \chi_{p_1}(1) \\
\vdots
\]

\[
\chi_{p_1}(M - 1) = N^{(i)}_{M-1} \quad \ell^{(i)}_{M-1} \chi_{p_1}(M - 2), \quad (39)
\]

where positive numbers \(N^{(i)}_j \) satisfy the similar inequalities to (26). Note that \(\ell^{(i)}_j \geq \ell^{(i)}_j \) (\(j = 1, 2, \ldots, M \)) and it is always possible to choose \(N^{(i)}_j \) such that

\[
\frac{\chi_{p_2}(j + 1)}{\chi_{p_2}(j)} \geq \frac{\chi_{p_1}(j + 1)}{\chi_{p_1}(j)}. \quad (40)
\]

Then (37) is expanded as

\[
\frac{(p_1 - p_2)(1 - p_1)^{j}(1 - p_2)^{j}}{p_1 p_2} \prod_{n'=n+1}^{n} \left(\frac{1 - p_i}{1 + \delta_{n'}} \right)^{-1} \left((1 - q_j^{(i)}) - T_0 \right)^{-1}
\]

\[
\times \sum_{i=0}^{\infty} \sum_{i'=-1}^{\infty} (a_{i,i'} \chi_{p_1}(j + i) \chi_{p_2}(j + 1 + i') - b_{i,i'} \chi_{p_2}(j + i') \chi_{p_1}(j + 1 + i')),
\]

where \(a_{0,0} = b_{0,0} = 1 \) and, from (29), we evaluate

\[
\chi_{p_1}(j) \chi_{p_2}(j + 1) = \sum_{i=0}^{\infty} \sum_{i'=-1}^{\infty} a_{i,i'} \chi_{p_1}(j + i) \chi_{p_2}(j + 1 + i'),
\]

\[
\chi_{p_2}(j) \chi_{p_1}(j + 1) = \sum_{i=0}^{\infty} \sum_{i'=-1}^{\infty} b_{i,i'} \chi_{p_2}(j + i') \chi_{p_1}(j + 1 + i').
\]
Then, using (40), we find
\[
\lim_{\epsilon \to +0} \epsilon \log \sigma_n^s = \max \left[0, K^{(1)}(s, n), K^{(2)}(s, n),
K^{(1)}(s, n) + K^{(2)}(s, n) + A(Mt + j) \right],
\]
\[
K^{(i)}(n, Mt + j) \equiv K_0^{(i)} - t L^{(i)} - \sum_{j=1}^j \ell_j^{(i)} + \sum_{n'} \min \left[\theta_{n'}, L^{(i)} \right] \quad (i = 1, 2), \quad (41)
\]
\[
A(Mt + j) \equiv L^{(2)} + \ell_{j+1}^{(2)} \quad \text{(modulo M)}. \quad (42)
\]

This gives a two soliton solution. We show an example of two soliton solution to Eq. (12) for finite \(\epsilon \) and corresponding BBS in Figs. 6.

The integer \(\ell_j^{(1)} \) (1 \(\leq j \leq M \)) corresponds to the number of \(j \)th balls in the larger soliton at \(t \to -\infty \), and \(\ell_j^{(2)} \) corresponds to that of the smaller soliton at \(t \to +\infty \). Since the order of balls with the same number (same species) does not change in time evolution, the balls in the smaller soliton at \(t \to +\infty \) must be included in the larger soliton at \(t \to -\infty \). Therefore the condition \(\ell_j^{(1)} \geq \ell_j^{(2)} \) must hold for any two soliton solutions. We should also note that there are several freedoms to choose the phase \(A(s) \) in taking UD limit. However we conjecture that the other choices give essentially the same time evolution patterns for BBS.

![Graphs showing soliton solutions](image-url)

(a) \(y \equiv \exp[-1/\epsilon] = 1.0^{-4} \) \hfill (b) \(y = +0(\epsilon \to +0) \)

(c) Corresponding time evolution of BBS

Figure 6: Two soliton solution to Eq. (12).

\(N \) soliton solutions are obtained in the same ways and we only show the results. We take
\[
g(t) = \prod_{i=1}^N \left(1 + \psi(p_i, t) \phi^s(p_i, t) \right), \quad (43)
\]
where
\[\psi(p_i) = \psi(L^{(i)} : \varepsilon), \quad \phi^*(p_i) = \phi^*(L^{(i)}; \{ \ell_j^{(i)} \}; K_0^{(i)} : \varepsilon) \quad (i = 1, 2, \cdots, N). \] (44)

We suppose
\[L^{(1)} \geq L^{(2)} \geq \cdots \geq L^{(N)}, \]
and
\[\ell_j^{(1)} \geq \ell_j^{(2)} \geq \cdots \geq \ell_j^{(N)}, \quad (j = 1, 2, \cdots, N). \]
The latter condition is a natural constraint of \(N \) soliton solutions of BBS as is the case of two soliton solutions. Then \(N \) soliton solutions are given by
\[Y^* = \max_{\vec{\mu}} \left[\sum_{i=1}^{N} \mu_i K^{(i)}(s, n) - A(\vec{\mu}; s) \right]. \] (45)

Here \(\vec{\mu} \equiv (\mu_1, \mu_2, \ldots, \mu_N) \) \((\mu_i = 0, 1) \) and \(\max_{\vec{\mu}}[\cdots] \) denotes the maximum value among \(2^N \) values which are obtained by putting \(\mu_i = 0 \) or 1 for \(i = 1, 2, \cdots, N \), and
\[K^{(i)}(Mt + j, n) \equiv K_0^{(i)} - tL^{(i)} - \sum_{j'=1}^{j} \ell_{j'}^{(i)} + \sum_{n'} \min[\theta_{n'}, L^{(i)}], \]
with an arbitrary integer \(K_0^{(i)} \). In the case:
\[
\begin{cases}
\mu_i = 1 & \text{for } i = i_1, i_2, \cdots, i_p \\
\mu_i = 0 & \text{otherwise,}
\end{cases}
\]
the phase factor \(A(\vec{\mu}; s) \) is given by
\[A(\vec{\mu}; s) \equiv \sum_{k=1}^{p} (k - 1)L^{(i_k)} + \sum_{k=1}^{p} \left(X^{(i_k)}(s + k - 1) - X^{(i_k)}(s) \right), \]
where \(X^{(i)}(Mt + j) \equiv tL^{(i)} + \sum_{j'=1}^{j} \ell_{j'}. \)

5 Conclusion

We have investigated CAs which are realized by the movements of balls in an array of infinite number of boxes. We showed that the BBSs are obtained by UD of the NDKP eq. and that the spatial dependence of the capacity of each box corresponds to a nonautonomous variable of the NDKP eq. The explicit expressions of the \(N \) soliton solutions to the BBSs are presented with the aid of some peculiar soliton solutions of the NDKP eq.

Although our solutions seem to cover all the soliton solutions to the BBSs, we have not found the proof yet. We may need another approach which was effective in the case of box capacity one \([19, 20]\), which is a future problem. In BBSs, there is also another
freedom: capacity of carrier [8]. Extension to the system including this freedom is also another future problem.

Acknowledgments
The authors are grateful to Prof. J. Satsuma and Dr. A. Nagai for helpful discussions. The present work was partially supported by a Grant-in-Aid from the Japan Ministry of Education, Science and Culture.

References

[11] This name was given by B. Grammaticos.

